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Awealthof neuroscientific evidence indicates that our brains respond
differently to previously encountered than to novel stimuli. There has
been anupswell of interest in the prospect that functionalMRI (fMRI),
when coupled with multivariate data analysis techniques, might
allow the presence or absence of individual memories to be detected
from brain activity patterns. This could have profound implications
for forensic investigations and legal proceedings, and thus themerits
and limitations of such an approach are in critical need of empirical
evaluation. We conducted two experiments to investigate whether
neural signatures of recognition memory can be reliably decoded
from fMRI data. In Exp. 1, participants were scanned while making
explicit recognition judgments for studied and novel faces. Multi-
voxel pattern analysis (MVPA) revealed a robust ability to classify
whether a given face was subjectively experienced as old or new, as
well aswhether recognitionwas accompanied by recollection, strong
familiarity, or weak familiarity. Moreover, a participant’s subjective
mnemonic experiences could be reliably decoded evenwhen the clas-
sifierwas trainedon thebraindata fromother individuals. In contrast,
the ability to classify a face’s objective old/new status, when holding
subjective status constant, was severely limited. This important
boundary condition was further evidenced in Exp. 2, which demon-
strated that mnemonic decoding is poor when memory is indirectly
(implicitly) probed. Thus, although subjective memory states can be
decoded quite accurately under controlled experimental conditions,
fMRI has uncertain utility for objectively detecting an individual’s
past experiences.

declarative memory | episodic retrieval | experiential knowledge | memory
detection | pattern classification | functional MRI

Our brains are remarkable in their ability to encode and store
an ongoing record of our experiences. The prospect of using

advanced brain imaging technologies to identify a neural marker
that reliably indicates whether or not an individual has previously
encountered a particular person, place, or thing has generated
much interest in both neuroscientific and legal communities (1, 2).
A memory detection technique could conceivably be used to in-
terrogate the brains of suspected criminals or witnesses for neural
evidence that they recognize certain individuals or entities, such
as those from a crime scene. Indeed, data from one electroen-
cephalographic (EEG) procedure [Brain Electrical Oscillation
Signature (BEOS) Profiling] was recently admitted in a murder
trial in India to establish evidence that the suspect’s brain con-
tained knowledge that only the true perpetrator could possess (3).
Results from another EEG-based technique, which relies on the
P300 response to infer that an individual “recognizes” a probe
stimulus, were admitted into evidence in a U.S. court case in 2001
(4). Given these precedents, coupled with the rapid strides being
made in cognitive neuroscience research, other parties will almost
certainly eventually seek to exploit brain-recording data as evi-
dence of a person’s past experiences, in judicial proceedings or in
civil, criminal, military, or intelligence investigations. The scien-
tific validity of such methods must be rigorously and critically
evaluated (5–12).
Although there are no peer-reviewed empirical papers describ-

ing the BEOS Profiling method (to our knowledge), this approach
appears to follow in the tradition of prior EEG methods for

detecting the presence or absence of memory traces (13–15). Be-
cause EEG-based techniques have been argued to suffer several
major limitations (SI Discussion), recent interest has focused on
applying fMRI as a means to probe experiential knowledge (1).
The greater spatial resolution of fMRI data may allow researchers
to better detect and more precisely characterize the distributed
pattern of brain activity evoked by a particular stimulus or cogni-
tive state.Usingmultivoxel pattern analysis (MVPA)methods (16,
17) that can be applied to index memory-related neural responses
(18–22), we capitalized on the rich information contained within
distributed fMRI activity patterns to attempt to decode the mne-
monic status of individual stimuli.
A substantial body of neuroscientific evidence demonstrates that

an individual’s brain responds differently when it experiences
a novel stimulus as compared with a stimulus that has been pre-
viously encountered (23–26). For example, prior fMRI data sub-
mitted to univariate analysis have documented regions of pre-
frontal cortex (PFC), posterior parietal cortex (PPC), and medial
temporal lobe (MTL)wherein activation tracks the degree to which
a stimulus gives rise to the subjective mnemonic perception that it
was previously experienced (i.e., perceivedoldness), independent of
the stimulus’s true mnemonic history (27–30). Other fMRI studies
have identified regions of the MTL and posterior sensory cortices
wherein activity appears to track the objective mnemonic history of
stimuli, independent of an individual’s subjective mnemonic expe-
rience (30–35). Neural correlates of past stimulus experience have
also been revealed in fMRI and EEG studies of priming, a form of
nondeclarativememory in which a previously encountered stimulus
is processed more fluently upon subsequent presentation in an in-
direct (implicit) memory test (23, 36–38). Although these rich lit-
eratures suggest that fMRI memory detection may be possible, it is
presently unknown whether the subjective and objective neural
signatures of old/new recognition can be reliably detected on in-
dividual test trials. Moreover, to the extent that memory detection
is possible, the across-subject consistency of the neural evidence
affording such classification is unknown.
In two experiments, we assessed whether distinct mnemonic

categories—subjective memory states and objective old/new sta-
tus—can be classified from single-trial fMRI data using anMVPA
approach. In both, participants were exposed to a large set of faces
and then were scanned ≈1 h later while viewing the studied faces
as well as novel faces. Exp. 1 examined classification of subjective
and objective memory while individuals were engaged in a task
that required explicit recognition decisions regarding the test
stimuli. Exp. 2 was virtually identical, with the key differences
being that (i) mnemonic encoding was incidental, rather than
intentional, and (ii) during the first half of the scanning session,
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participants made male/female judgments about old and new
faces (rather than explicit memory judgments), whereas during
the second half of scanning, participants made explicit recognition
decisions. Thus, Exp. 2 assessed classification under circum-
stances in which old/new recognition was indirectly probed and
examined whether the neural signatures that characterize explicit
recognition are also diagnostic of indirect (implicit) recognition.

Results
Exp. 1: Explicit Recognition Task. Behavioral performance. Sixteen
participants were scanned while making explicit memory judg-
ments on 400 probe faces. For each, participants indicated their
mnemonic experience using one of five responses: recollected as
studied (“R old”), high confidence studied (“HC old”), low con-
fidence studied (“LC old”), low confidence unstudied (“LC
new”), or high confidence unstudied (“HC new") (39). Mean
recognition accuracy was 0.71 [(hit rate (0.70) + correct rejection
(CR) rate (0.71))/2]; mean d′ (1.15) differed from chance [t(15) =
7.42, p < 10−5]. The distribution of responses to objectively old
(OLD) and objectively new (NEW) faces confirmed that partic-
ipants used the response options appropriately, rarely responding
“R old” or “HC old” to NEW faces or “HC new” to OLD faces
(Table S1, Exp. 1). Reaction times (RTs) followed an inverted U-
shaped function, with the fastest RTs occurring for responses at
the endpoints of the recognition scale (i.e., “R old” and “HC
new”) and the slowest RTs for LC responses. Despite increased

study-test lag, mnemonic interference, and potential fatigue,
performance was relatively stable (mean d′ in the first (1.23) and
second (1.09) half of the session did not significantly differ [t(15) =
1.65, P = 0.11].
fMRI analyses. Assessing classifier performance. We used regularized
logistic regression to classify the mnemonic status of individual
trials based on distributed fMRI activation patterns. Classification
performance was indexed by receiver operating characteristic
(ROC) curves, which rank the classification outputs according to
their probability estimates (from strongly favoring Class A to
strongly favoring Class B) and chart the relationship between the
classifier’s true positive rate (probability of correctly labeling
examples of Class A as Class A) and false positive rate (probability
of incorrectly labeling examples of Class B as Class A) across
a range of decision boundaries. The area under the curve (AUC)
indexes the mean accuracy with which a randomly chosen pair of
Class A and Class B trials could be assigned to their correct classes
(0.5 = random performance; 1.0 = perfect performance).
Classifying faces as OLD vs. NEW. As a first assessment of the

MVPA classifier’s ability to decode whether a face was OLD or
NEW, we analyzed trials in which the participant correctly labeled
the face’s objective mnemonic status, training the classifier to
discriminate OLD faces that participants called “old” (Hits) from
NEW faces called “new” (CRs). In this classification scheme, the
objective and subjective old/new status of the faces in each class
were identical, and thus the classifier could capitalize on neural

Fig. 1. Mnemonic decoding results. Mean ROC curves (A, C, and E) and their corresponding AUC values (B, D, and F) summarize classifier performance for
various classification schemes in Exp. 1 (A–D) and Exp. 2 (E and F). AUC values are plotted for each participant’s data using unique identifiers, with the group
means indicated by the vertical bars. Chance performance (AUC = 0.5) is indicated by the dashed line. For each classification scheme, participants with fewer
than 18 trials in each class were excluded from analysis (Table S2). In E and F, "Implicit → Explicit" refers to a classifier trained to discriminate OLD vs. NEW on
the Implicit Recognition Task data and tested on the Explicit Recognition Task data, and "Explicit → Implicit" refers to the converse classification scheme.
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signals pertaining to either or both. The results (Fig. 1 A and B)
revealed that the classifier successfully discriminated Hits from
CRs, with a mean AUC of 0.83 [t test vs. null hypothesis (AUC =
0.50): t(15) = 27.01, P < 10−13]. Notably, robust classification
performance was obtained for all 16 participants, with AUC levels
ranging from 0.76 to 0.93. Across-participant variance in Hit/CR
classification performance was partially driven by individual dif-
ferences in recognition memory performance, as evidenced by
a significant correlation between classification AUC and behav-
ioral recognition accuracy [r = 0.55, P < 0.05].
Although AUC provides a more sensitive single metric of clas-

sification performance than does overall accuracy (40), mean
classification accuracy levels were also computed (Fig. S1A). Hits
could be discriminated from CRs with a mean accuracy of 76%
when the classifier was forced to make a guess on every trial.
However, when the classifier’s guesses were restricted to only
those trials for which it had the strongest “confidence” in its pre-
dictions, mean classification accuracy rose to as high as 95% (Fig.
S1A). Thus, the classification procedure can be calibrated to
produce few classification errors when the classifier is made to
refrain from guessing on all but those trials where the neural evi-
dence for a particular mnemonic state is most robust.
Classifying subjective mnemonic experience. A variety of classifica-

tion schemes were used to assess the ability to decode the sub-
jective mnemonic experience associated with individual faces. To
isolate the purely subjective components of retrieval, objective
mnemonic status was held constant for any given classification. In
this manner, a classifier trained to discriminate between studied
faces correctly recognized as “old” (Hits) and studied faces in-
correctly perceived as “new” (Misses) indicates how well the
subjective “old”/“new” status of faces can be decoded when the
objective status is always OLD. Likewise, a classifier trained to
discriminate between FAs and CRs indicates the ability to decode
the subjective “old”/“new” status when the objective status is al-
ways NEW. The results (Fig. 1 A and B) revealed well above
chance classification of the subjective mnemonic experience as-
sociated with both OLD faces (mean AUC = 0.75) [t(14) = 18.08,
P< 10−10] and NEW faces (AUC= 0.70) [t(15) = 11.43, P < 10−8].
Mean classification accuracy across classifier “confidence” further
revealed that the Hit/Miss classification approached 90% and the
FA/CR classification approached 80% at the highest “confi-
dence” level (Fig. S1A). These effects remained robust when only
LC responses were considered, indicating that the classifier can
decode neural signatures of subjective oldness even when the
participant’s decision confidence is held constant (SI Results).
Classifying distinct manifestations of subjective recognition. We next

assessed the accuracy with which classifiers could decode the
specific type of subjective recognition experienced by participants.
First, we trained a classifier to discriminate Hits on which partic-
ipants reported the experience of contextual recollection (R Hits)
from Hits on which participants reported low confidence in their
recognition judgments (LC Hits). Differentiating between these
two subjective memory states proved to be an easy task for the
classifier (Fig. 1C andD), with a mean AUC of 0.90 [t(10) = 29.75,
P < 10−10] and a mean accuracy for the upper classifier “confi-
dence” decile of 97% (Fig. S1B). Second, and strikingly, separate
classifiers were able to robustly discriminate HCHits from both R
Hits (AUC= 0.79) [t(12) = 13.56, P < 10−7] and LCHits (AUC=
0.73) [t(12)=11.57,P< 10−7], with the former classification scheme
significantly outperforming the later [t(10) = 3.07, P < 0.05] (Fig. 1
C and D); mean accuracy at the highest classifier “confidence”
level was ≈90% and 84%, respectively (Fig. S1B). Thus, classi-
fications of different subjective recognition states from distributed
patterns of fMRI data were well above chance when the memory
test was explicit, with discrimination between recollection (RHits)
and strong familiarity (HC Hits) being superior to that between
strong familiarity and weak familiarity (LC Hits).

Classifying objective mnemonic status. Next, we assessed whether
the objective OLD/NEW status of faces can be decoded, holding
subjective mnemonic status constant. Because most participants
made few “R old” or “HC old” responses for NEW faces and
few “HC new” responses to OLD faces (average number of tri-
als: R FAs = 2.3; HC FAs = 11.2; HC Misses = 11.4; see also
Table S2), analyses were restricted to trials on which participants
made low confidence responses. Importantly, when participants
responded “LC old,” the classifier demonstrated above-chance
discrimination of OLD faces (LC Hits) from NEW faces (LC
FAs), with a mean AUC of 0.59 [t(12) = 5.04, P < 10−3]. How-
ever, classification accuracy was markedly, and significantly,
lower (Fig. 1 A and B and Fig. S1A) than in the above subjective
memory classifications (all P < 0.05). Moreover, when partic-
ipants responded “LC new” (i.e., LC Misses vs. LC CRs), the
classifier was at chance in discriminating OLD from NEW faces
[mean AUC = 0.51; t(13) = 0.66, n.s.]. Thus, while classification
of subjective mnemonic states was robust, classification of the
objective mnemonic status of a face, holding subjective status
constant, was relatively poor.
Neural signals that drive classifier performance. Although the goal of

the present investigation was to quantify the discriminability of
distinct mnemonic states based on their underlying fMRI activity
patterns, it is valuable to examine which brain regions provided
diagnostic signals to each classifier. Importance maps for the
classifications of subjectivemnemonic states are displayed in Fig. 2
{see SI Methods for details and Fig. S2 for expanded data
reporting; seeSIResults for additional analyses exploring decoding
performance when classification was restricted to individual ana-
tomical regions of interests (Table S3) or focal voxel clusters [i.e.,
spherical searchlights (Fig. S3 and Fig. S4A)]}. The importance
maps for the “old”/“new” classifications (Hit/CR, Hit/Miss, and
FA/CR) revealed a common set of regions wherein activity
increases were associated with the classifier’s prediction of an
“old” response. Prominent foci included the left lateral PFC (in-
ferior frontal gyrus; white arrows) and bilateral PPC falling along
the intraparietal sulcus (IPS) [yellow arrows; for the FA/CR
classification, bilateral IPS can be visualized in amore ventral slice
(Fig. S2)]. Although few regions exhibited negative importance
values, a region of anterior hippocampus, extending into the
amygdala, emerged in the Hit/CR and FA/CR maps as showing
activity increases that predicted a “new” response.
The importance maps for the two classifications that isolated

distinct experiences of subjective recognition revealed several
notable findings. In the R Hits vs. HC Hits classification, bilateral
hippocampal regions (orange arrows) and left angular gyrus (blue
arrow)were associatedwith the prediction of anRHit (Fig. 2). The
hippocampal regions had a more dorsal and posterior extent than
the hippocampal areas described above, and overlapped with
a region of left posterior hippocampus that was predictive of an
“old” response in theHit/CRandHit/Miss classifications (Fig. S2).
Critically, these robust hippocampal and angular gyrus effects
were substantially diminished in the HC Hits vs. LC Hits impor-
tance map. Rather, this classification of item recognition strength
appeared to depend more strongly on the dorsal PPC and left
lateral PFC regions that were also observed for the subjective
“old”/“new” classifications.
Across-participant classification. The above analyses were con-

ducted on classifiers trained and tested on within-participant
fMRI data. It is also of interest to know whether memory-related
neural signatures are sufficiently consistent across individuals to
allow one individual’s memory states to be decoded from a clas-
sifier trained exclusively on fMRI data from other individuals’
brains. Accordingly, we reran the classification analyses, but this
time we used a leave-one-participant-out cross-validation ap-
proach. Across-participant classification performance levels were
similar to those of the corresponding within-participant analyses
(Fig. S5; compare with Fig. 1 A–D), suggesting high across-
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participant consistency in memory-related activation patterns.
Indeed, the corresponding within- and across-participant AUCs
did not significantly differ (all P > 0.01; pcrit = 0.0063 with
Bonferroni correction for 8 comparisons), although performance
for the across-participant LC Hit/FA classification no longer
exceed chance (P = 0.1).

Exp. 2: Implicit vs. Explicit Recognition. A new group of seven par-
ticipants performed amodified version of Exp. 1, in which prescan
mnemonic encoding was incidental and the first five scanning runs
required male/female judgments, rather than explicit memory
judgments. Because old/new recognition during these runs was
not relevant to the male/female decision, memory in these runs
was indirectly (implicitly) probed; we refer to this task as the
“Implicit Recognition Task”. For the remaining five scanning
runs, participants performed the same “Explicit Recognition
Task” used in Exp. 1.
Behavioral performance. On the Implicit Recognition Task, partic-
ipants were over 99% accurate at judging the male/female status
of the faces. On the Explicit Recognition Task, the distribution
of responses to OLD and NEW faces (Table S1, Exp. 2) was
comparable to those obtained in Exp. 1. When directly con-
trasted with the performance levels obtained in the last five runs
of Exp. 1 (mean d’ = 1.09), participants in Exp. 2 exhibited
superior recognition performance (mean d’ = 1.71) [t(21) = 2.46,
P < 0.05], which may be attributable to the deep encoding
afforded by the Exp. 2 study task (attractiveness ratings).
fMRI analyses. We first assessed whether MVPA classification
performance during Explicit Recognition was comparable across
Exps. 1 and 2. A classifier trained to discriminate Hits vs. CRs
during the Explicit Recognition Task runs in Exp. 2 achieved
a mean AUC of 0.81 (Fig. 1 E and F). To compare classification

rates across experiments, we reran the Hits vs. CRs classification
from Exp. 1 using only the last 5 scanning runs; when doing so, the
meanAUC inExp. 1 was 0.77, which was not significantly different
from that in Exp. 2 [t(21) = 0.46, n.s.].
Having confirmed that mnemonic classification during the

Explicit Recognition Task was roughly equivalent across the two
experiments, we ran a series of analyses to compare classification
performance between the Explicit and Implicit Recognition
Tasks of Exp. 2 (Fig. 1 E and F). Because participants did not
make memory judgments during the Implicit Recognition Task,
the faces encountered during this task could only be labeled by
their objective OLD/NEW status. Thus, we assessed how accu-
rately we could classify the OLD/NEW status of faces during the
Implicit Recognition Task, where any effects of memory are
indirect, and during the Explicit Recognition Task (for the latter,
this entailed classifying OLD vs. NEW faces without taking
participants’ subjective recognition responses into account; note
that subjective and objective mnemonic status are correlated).
Importantly, whereas OLD/NEW classification was well above
chance using the Explicit Recognition Task data from Exp. 2
(mean AUC = 0.71) [t(6) = 6.27, P < 10−3], classification per-
formance did not markedly differ from chance using the Implicit
Recognition Task data (mean AUC = 0.56) [t(6) = 2.39, P =
0.054; pcrit = 0.025 with Bonferroni correction for 2 compar-
isons] (Fig. 1 E and F). The task-dependent decline in OLD/
NEW classification performance across the explicit and implicit
tests was significant [t(6) = 5.46, P < 0.01]. Classification
remained at chance levels when the classifier was trained on
trials from the Explicit Recognition Task and tested on trials
from the Implicit Recognition Task (mean AUC = 0.50) [t(6) =
0.13, n.s.] (Fig. 1 E and F). The converse classification scheme
(i.e., trained on Implicit and tested on Explicit) also yielded
chance performance (mean AUC = 0.51) [t(6) = 0.24, n.s.].
Taken together, these analyses suggest that our classification
methods are not capable of robustly decoding the OLD/NEW
status of faces encountered during the Implicit Recognition Task.

Discussion
The present experiments evaluated whether individuals’ sub-
jective memory experiences, as well as their veridical experiential
history, can be decoded from distributed fMRI activity patterns
evoked in response to individual stimuli. MVPA yielded several
notable findings that have implications both for our understand-
ing of neural correlates of recognitionmemory and for possible use
of these methods for forensic investigations. First, MVPA classi-
fiers readily differentiated activity patterns associated with faces
participants’ correctly recognized as old from those associated
with faces correctly identified as novel. Second, it was possible to
reliably decode which faces participants subjectively perceived to
be “old” and which they perceived to be “new,” even when holding
the objectivemnemonic status of the faces constant. Third,MVPA
classifiers accurately determined whether participants’ recogni-
tion experiences were associated with subjective reports of recol-
lection, a strong sense of familiarity, or only weak familiarity, with
the discrimination between recollection and strong familiarity
being superior to that between strong vs. weak familiarity. Fourth,
neural signatures associated with subjective memory states were
sufficiently consistent across individuals to allow one participant’s
mnemonic experiences to be decoded using a classifier trained
exclusively on brain data from other participants. Fifth, in contrast
to the successful decoding of subjective memory states, the ve-
ridical experiential history associated with a face could not be
easily classifiedwhen subjective recognitionwas held constant. For
faces that participants claimed to recognize, the classifier achieved
only limited success at determining which were actually old vs.
novel; for faces that participants claimed to be novel, the classifier
was unable to determine which had been previously seen. Finally,
a neural signature of past experience could not be reliably decoded

Fig. 2. Classification importance maps. For each classification scheme,
group mean importance maps highlight voxels wherein activity increases
drive the classifier toward a Class A prediction (green) or Class B prediction
(violet). Importance values were arbitrarily thresholded at ±0.0002 and
overlaid on selected axial slices of the mean normalized anatomical image
(coordinates indicate z axis position in Montreal Neurological Institute
space). See text for references to colored arrows.
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during implicit recognition, during which participants viewed
previously seen and novel faces outside the context of an explicit
recognition task. Taken together, these findings demonstrate the
potential power of fMRI to detect neural correlates of subjective
remembering of individual events, while underscoring the poten-
tial limitations of fMRI for uncovering the veridical experiential
record and for detecting individual memories under implicit re-
trieval conditions.
The robust classification of participants’ subjective recognition

states indicates that the perceptions of oldness and novelty are as-
sociated with highly distinctive neural signatures. Assessment of the
importance maps for the Hit/Miss and FA/CR classifications
(Fig. 2) revealed a common set of lateral PFC and PPC regions for
which increased activity favored an “old” response; a qualitatively
similar pattern was apparent in univariate statistical maps (Fig. 3;
see also Fig. S3). These frontoparietal regions have been previously
shown to track perceived oldness (27, 28, 41, 42) and are likely in-
volved in cognitive and attentional control processes that guide the
recovery of information from memory, as well as the evaluative
processes that monitor retrieval outcomes and guide mnemonic
decisions. Beyond successful classification of items perceived to be
“old” or “new,”MVPA classifiers could also reveal the specific type
of “oldness” experienced by participants. In particular, Hits asso-
ciated with subjectively reported contextual recollection were re-
liably discriminated from Hits associated with high confidence
recognition without recollection, which were in turn discriminated
from Hits associated with low confidence recognition. These clas-
sification analyses likely capitalized on neural signals related to
recollection and item familiarity, respectively. Indeed, the impor-
tance maps revealed that regions of the hippocampus and angular
gyrus, commonly associated with recollective retrieval (28, 43, 44),
signaled diagnostic information for the classifier trained to differ-
entiate R Hits from HCHits, and yet provided limited information
for the classifier trained to differentiate HC Hits from LC Hits. By
contrast, this later classifier appeared to rely more heavily on
regions of ventrolateral PFC and dorsal PPC, whose activity levels
have previously been shown to track one’s level of familiarity or
mnemonic decision confidence (27, 39).
In sharp contrast to the robust classification of subjective rec-

ognition states, classifying an item’s objective OLD/NEW status
was far more challenging. When we assessed the decoding of
objective recognition independent from subjective recognition—
items were matched on their level of perceived oldness or per-
ceived novelty—above-chance OLD/NEW classification was re-

stricted to items participants assigned a “LC old” response (LC
Hit/FA). Although the predictive value of this classification was
relatively poor (mean AUC = 0.59), the modest success of this
classifier suggests that the neural signatures of true and false
recognition are at least sometimes distinguishable. This finding is
consistent with previous fMRI studies using univariate statistical
analyses, which have reported activation differences in the MTL
(31–34, 45, 46) and sensory neocortex (30, 35, 45, 46) during true
and false recognition. However, our inability to classify the ob-
jective OLD/NEW status of items that received a “LC new” re-
sponse (LCMiss/CR) raises the possibility that our limited success
on the LC Hit/FA classification exploited small subjective dif-
ferences rather than neural signatures that tracked the veridical
experiential history of stimuli per se.
To further assess whether stimulus experiential history can be

decoded, we examined whether an MVPA approach could dif-
ferentiate brain responses associated with OLD and NEW faces
when participants performed an indirect (implicit) memory task.
Numerous neuroimaging studies have documented activity re-
ductions (“repetition suppression” or “fMRI adaptation”) asso-
ciated with the facilitated processing of previously encountered,
relative to novel, stimuli (23, 37, 38); such “neural priming” effects
are thought to be a hallmark of neocortical learning that supports
nondeclarative memory. Although univariate analyses of the Im-
plicit Recognition Task data from Exp. 2 revealed repetition
suppression in regions of visual association cortex and anterior
MTL (Fig. S4B), when these data were submitted to MVPA, the
classifier exhibited an extremely poor ability to detect the OLD/
NEWstatus of faces. Thus, these neural priming signals were likely
too weak and variable across trials to effectively drive classifier
performance. Furthermore, there was a low degree of overlap
between the brain patterns associated with explicit and implicit
recognition, as evidenced by the failure of a classifier trained on
OLD vs. NEW discrimination using explicit retrieval data to per-
form above chance when tested on implicit retrieval data. These
findings highlight the profound influence that goal states exert on
the neural processes triggered by sensory inputs (47).
Taken together, our data raise critical questions about the uti-

lity of an fMRI-based approach for the detection of experiential
knowledge. If one’s goal is to detect neural correlates of subjective
remembering, the data provide novel evidence that, at least under
the constrained experimental conditions assessed here, this could
be achieved with high accuracy, especially if only the classifier’s
most “confident” predictions are considered. Moreover, it appears
that a participant’s subjective recognition experiences can be
decoded evenwhen the classifier is trained on brain data fromother
participants, indicating that macroscopic (1) neural signatures of
subjective recognition are highly consistent across individuals.
Thus, from an applied perspective, this method might be able to
indicate whether an individual subjectively remembers a stimulus,
even when data from that individual are not available to train the
classifier. On the other hand, an ideal memory detection technol-
ogy would also be able to reveal whether a person had actually
experienced a particular entity, without regard to his or her sub-
jective report. Our data indicate that neural signatures of objective
memory, at least for the simple events assessed here, are extremely
challenging to detect reliably with current fMRI methods. This
finding reveals a potentially significant boundary condition that
may limit the ultimate utility of fMRI-based memory detection
approaches for real-world application (see SI Discussion for con-
sideration of additional boundary conditions). The neuroscientific
and legal communities must maintain an ongoing dialogue (5) so
that any future real-world applications will be based on, and limited
by, controlled scientific evaluations that are well understood by the
legal system before their use. Although false positives and false
negatives can have important implications formemory theory, their
consequences can be much more serious within a legal context.

Fig. 3. Univariate contrast maps. Group t tests on activity parameter esti-
mates (derived from a standard voxel-level general linear model-based
analysis) illustrate regions with greater activity for trials from Class A (warm
colors) or Class B (cool colors). The general correspondence between these
univariate maps and the importance maps (Fig. 2) suggests that the classi-
fication analyses at least partially capitalized on large-scale (macroscopic)
signal differences between conditions (see Figs. S3 and S4 for expanded
univariate data reporting).
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Methods
Exp. 1 Procedure. Before scanning, participants intentionally studied 210
faces, viewing each on a laptop computer for 4 s. Approximately 1 h later,
participants were scanned while performing 400 trials of the Explicit
Recognition Task (40 trials during each of 10 scanning runs). On each trial,
a face was presented for 2 s, and participants indicated (with a 5-button
response box in their right hand) whether they (i ) recollected having
studied the face (i.e., remembered contextual details associated with the
initial encounter), (ii ) were highly confident they studied it, (iii ) thought
they studied it, but had low confidence in this assessment, (iv) thought it
was novel, but had low confidence in this assessment, or (v) were highly
confident it was novel (see SI Methods for additional details). Stimulus
presentation was followed by an 8-s fixation interval. One half of the test
faces were novel (NEW) and one half were studied (OLD), with assignment
counterbalanced across participants.

Exp. 2 Procedure. Exp. 2 was identical to Exp. 1, except for the following
critical changes. Rather than being instructed to memorize the faces during
the “study phase,” participants were instructed to rate the attractiveness of
each face on a 4-point scale. This task promoted attentive viewing and in-
cidental encoding of the faces. Then, during the first five scanning runs,
participants were instructed to make a button press response indicating
whether each face was male or female. Half of the faces in each scan were

OLD and half were NEW, but OLD/NEW status was not relevant to the male/
female decision (Implicit Recognition Task). Immediately before the sixth
scanning run, participants unexpectedly received a new set of task instruc-
tions—the same explicit recognition memory test instructions given to par-
ticipants in Exp. 1—and they performed this Explicit Recognition Task for the
remaining five scanning runs.

fMRI Data Analysis. Whole-brain imaging was conducted on a 3.0-T GE Signa
MRI system, and standard data preprocessing procedures, including spatial
normalization, were implemented. To reduce the fMRI time series data (TR =
2 s) to a single brain activity pattern for each of the 400 trials, the time points
corresponding to the peak event-related hemodynamic response—namely,
those occurring 4–8 s poststimulus, which translates to the third and fourth
poststimulus TRs—were extracted and averaged. MVPA classification anal-
yses were conducted using a regularized logistic regression algorithm, and
performance was assessed using a cross-validation procedure (SI Methods).
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SI Results
Assessment of Subjective Old vs. New Classification Performance
When Participants’ Decision Confidence Is Held Constant. When
trained/tested on the Hit/Miss or FA/CR classification scheme, it
is possible that the classifier does not learn to identify neural
signatures of subjective oldness vs. novelty per se but rather learns
correlates of participants’ decision confidence. This issue is es-
pecially pertinent to the Hit/Miss classification, where most of
the Misses were low confidence responses (“LC new”) whereas
the majority of Hits were high confidence responses (“R old” or
“HC old”). Accordingly, we reran these classifications while
holding participant decision confidence constant (because there
were relatively few high confidence Misses or FAs, we used only
low confidence responses). For the LC Hit/Miss classification,
AUC was 0.67 [t(11) = 8.22, P < 10−5]; for the LC FA/CR clas-
sification, AUC was 0.66 [t(14) = 8.42, P < 10−6]. Although
modest, both performance declines were significant (P < 10−3),
possibly revealing that the more inclusive Hit/Miss and FA/CR
classifiers partially exploited neural signals related to participant
decision confidence (in addition to signals related to subjective
mnemonic experience). Alternatively, the declines could result
from the classifier being trained on fewer trials in the LC-only
classification schemes, or from a diminution in the average
strength of the subjective oldness or novelty experienced by
participants (including the fact that the percentage of guesses is
inherently higher for LC, relative to HC, responses). In either
case, the fact that classification performance levels were still
robust after controlling for both objective oldness and subjective
decision confidence—with mean accuracy for the LC Hit/Miss
and LC FA/CR classifications reaching 77% and 74%, respec-
tively, at the strongest classifier “confidence” level—suggests that
the subjective mnemonic experience triggered by a test face can
be reliably decoded from single-trial fMRI activity patterns.

Evaluating Mnemonic Decoding Performance Based on Individual
Anatomical Regions. Although the classifier-derived importance
maps presented in Fig. 2 and Fig. S2 reveal the voxels whose activity
levels most strongly influenced classifier performance when all
23,000 voxels within our anatomical mask were used as features for
classification, it is also of interest to examine whether the brain
activity patterns within individual anatomical regions contain suf-
ficient information to allow decoding of mnemonic states. To this
end, we evaluated classification performance within 80 distinct
anatomical regions-of-interest (ROIs), defined by intersecting in-
dividual ROI masks from the Automated Anatomical Labeling
(AAL) library (1) with our 23,000-voxel anatomical mask.
For the various classification schemes assessing subjective rec-

ognition, a number of ROIs (particularly those in PFC and PPC)
supported classification performance (AUC) levels that were ≈4–
7% lower than that obtainedwithwhole-brain classification (Table
S3). Moreover, for the LC Hits vs. LC FAs classification of ob-
jective OLD/NEW status, several ROIs supported performance
levels on par or just slightly below the whole-brain level (Table S3,
rightmost column). Here, the top performing ROIs included a few
of the same PFC and PPC regions that emerged as top performers
in the subjective mnemonic classification analyses. Importantly,
however, this modest classification of objective OLD/NEW status
was also possible from data within visual areas commonly associ-
ated with face processing, including regions of the fusiform gyrus,
middle occipital cortex, and middle temporal gyrus. These later
effects raise the possibility that objective recognition is associated
with changes in local brain activity patterns linked to the percep-

tual analysis of the stimulus. Although ROI-based classification
did not reveal medial temporal lobe ROIs as being among the top
10 highest performing regions for any of the six classification
schemes (Table S3), classification based on hippocampal and
parahippocampal ROIs reached or exceeded an AUC of 0.60 for
the Hits vs. CRs and R Hits vs. HC Hits analyses.

Evaluating Mnemonic Decoding Performance Based on Local Distributed
Patterns.A complementary method of evaluating the informational
content represented within local brain activity patterns is the
spherical searchlight mapping approach (2). This method involves
running a large series of classification analyses, each using only
a small spherical clique of voxels, and recording the classification
performance level for each sphere. The center of the sphere is sys-
tematically shifted (like a searchlight) until classification perfor-
mance has been recorded for spheres centered at every voxel
location with the brain. For our purposes, this involved running
23,000 classification analyses, each using only a 123-voxel cluster of
unsmoothed fMRI data (i.e., those voxels within a 3-voxel radius of
the central voxel; note that sphere size diminishes for regions near
the edge of the brain mask), and recording the classification AUC
value at the center voxel of each sphere.
Group-averaged searchlight maps for classifications of sub-

jective mnemonic status are displayed in Fig. S3, along with the
corresponding set of univariate contrasts. These searchlight maps,
which reveal brain regions whose local voxel activity patterns are
capable of differentiating the two mnemonic states of interest,
highlight similar brain networks as those seen in the importance
maps that were derived from the whole-brain classification anal-
yses (Fig. S2). As one might expect from the individual ROI
classification analyses reported above, no single 123-voxel spher-
ical cluster was capable of achieving classification performance
levels as high as those obtained for the whole-brain classification
analysis. Nonetheless, spheres centered in many brain regions
showed fairly robust classification abilities. Importantly, when the
searchlight maps are viewed alongside the corresponding univar-
iate contrasts (i.e., group-level t tests on the voxel-by-voxel acti-
vation parameter estimates generated from a standard general
linear model analysis; Fig. S3), it is readily apparent that the re-
gions where the searchlight analysis produced the highest classi-
fication performance levels were typically the same regions that
showed robust univariate activation differences between the two
conditions. This makes the point that differences in the mean
signal level within a region across examples of Class A and Class B
may strongly drive classification performance [i.e., the signals
driving classifier performance were macroscopic (3)].
By contrast, an examination of the searchlight maps for the

classifications of objective recognition revealed a somewhat dif-
ferentpicture.TheLCHits vs.LCFAsclassificationanalysis,which
producedabove-chanceperformanceusingawhole-brain classifier
(mean AUC = 0.59), yielded a few regions with modest levels of
classification success when analyzed with the searchlight mapping
approach (Fig. S4A). In particular, a region of right fusiform/in-
ferotemporal cortex and a region of left medial superior frontal
gyrus (mSFG) showed the most robust ability to discriminate LC
Hits from LC FAs (peak AUC values for both regions reached
0.57, which is still quite poor in comparison with the classification
performance levels observed for the subjective recognition clas-
sification schemes). In contrast to the general correspondence
between the searchlight maps and univariate contrasts that was
noted for the analyses of subjective recognition, the univariate
contrast of LC Hits vs. LC FAs did not reveal effects in the fusi-
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form/inferotemporal cortex or mSFG at an uncorrected threshold
of P < 0.005 (Fig. S4A), nor at an even more liberal uncorrected
threshold of P< 0.05. Thus, it is possible that the neural signatures
of objective recognition in these regions are more readily detect-
able when the fine-grained local activation patterns are exploited
using an MVPA searchlight approach. The finding that LC Hits
can be distinguished from LC FAs (albeit weakly) based on brain
activity within the right fusiform/inferotemporal cortex, an area
associated with face processing, is consistent with the notion that
the perceptual qualities of true memories may differ from those
associated with false memories (4). Finally, no brain regions
showed even modest classification abilities in the searchlight
analysis of LC Misses vs. LC CRs (all AUCs < 0.53), which is
unsurprising, given that performance for this classification scheme
was also at chance using the whole-brain data.

Classifying Mnemonic States Using Large-Scale Regional Activity Profiles.
All of the classification analyses described thus far have used in-
dividual voxel activity values as features. Such an approach allows the
classification algorithm to capitalize on the information thatmight be
represented within fine-grained activation patterns. However, as
discussed above, the marked correspondence between our spherical
searchlight classification maps and univariate contrast maps suggests
that relatively large clusters of adjacent voxels may exhibit activation
levels that favor one condition over another, and thus are diagnostic
of mnemonic status. To the extent that large-scale regional activity
profiles are able to distinguish trials from two distinct conditions,
then a classifier that is trained with a spatially coarse representation
of the data should still achieve reasonable performance.
We assessed the degree to whichmacroscopic activation patterns

could be exploited to decode mnemonic states by rerunning our
classification analyses after averaging the fMRI activity levels across
all voxels within each of 80 distinct anatomical ROIs (defined, as
described above, using the AAL library). Thus, rather than feed-
ing our classification algorithm the activity values of 23,000 voxels as
features, hereweperformed the same analysiswith only 80 features.
Despite the fact that this data reduction procedure eliminated the
fine-grained information contained within individual brain regions,
classification performance remained surprisingly robust [mean
AUCs: Hits vs. CRs = 0.77; Hits vs. Misses = 0.70; FAs vs. CRs =
0.64;RHits vs.HCHits=0.71;HCHits vs. LCHits=0.68; LCHits
vs. LC FAs = 0.57; performance for the LC Misses vs. LC CRs
classification (AUC = 0.51) remained at chance]. These results il-
lustrate thatavarietyofmnemonic statescanbedifferentiatedbased
on their macroscopic activity profile, which likely tracks the gen-
eralized engagement of cognitive processes associated with distinct
memory states rather than retrieval of specific fine-grained mne-
monic representations (3). The diagnostic value of such macro-
scopic activation effects may also explain the ability of our standard
whole-brain classification analyses to succeed at across-participant
memory decoding (Fig. S1).

SI Discussion
Additional Factors That Will Likely Influence fMRI-Based Memory
Detection. The results of our study suggest that the forensic value
of an fMRI-basedmemory detection techniquemay be limited by the
fact that objective mnemonic classification performance is very poor
when (i) subjective memory judgments are held constant or (ii)
memory is indirectly (implicitly) probed. These findings highlight
the possibility of additional boundary conditions. For example, it
has been shown that participants can adopt simple countermanding
strategies to conceal the presence of “guilty knowledge” in studies
that use EEG (5), skin conductance (6, 7), or reaction time (ref. 8;
cf. ref. 9) measures to probe participants’ memories. The present
fMRI data similarly indicate that a change in participants’ goal
states (e.g., making male/female judgments instead of recognition
memory judgments) can dramatically reduce the ability to decode
neural correlates of experiential knowledge. As such, it seems likely

that the use of countermanding strategies will also decrease fMRI-
based classifier accuracy for discriminating both subjective and ob-
jective memory states. Future studies should systematically address
the effects of countermanding strategies to determine whether they
place further constraints on the forensic utility of fMRI for memory
detection. It will also be critical to assess mnemonic classification
accuracy for more ecologically valid experiences, because life’s
events are often considerably richer than the simplified events as-
sessed here; rich autobiographical memories may have different
neural signatures than those emerging in highly controlled, list-
learning experiments (10, 11). It is theoretically possible that fMRI-
based decoding of objective experiential history may be superior for
complex real-world events, relative to laboratory-induced experi-
ences with individual stimuli.
Before accepting the validity of potential forensic applications,

it will also be important to evaluate memory detection in more
realistic “forensic” contexts, such as scenarios in which partic-
ipants commit a mock-crime and subsequently attempt to con-
ceal their guilty knowledge while their memory for particular
events is probed (12, 13). However, such experimental paradigms
may still fail to induce the feelings of anxiety and sense of
jeopardy that characterize real-world interrogations, and thus
their ecological validity remains in question. It will also be im-
perative to enroll a more diverse sample of participants to assess
whether our results can be generalized to the broader population
(e.g., older vs. younger adults). Finally, the error rates (false
positives and false negatives) of any viable memory detection
approach will have to be quite well established, and the legal
system will ultimately have to determine whether those error
rates are acceptable for any particular use that might be made of
the technique (14).
Whereas the present investigation focused on fMRI-based

classification of recognition memory states, other recent fMRI
studies have achieved some success at applyingMVPA techniques
to probe the nature of the representations that are retrieved from
memory. Within the context of circumscribed task conditions, it is
possible to achieve above-chance classification of the category of
information about to be recalled frommemory (15), the particular
contextual associations brought back to mind during a retrieval
attempt (16, 17), some details about one’s recent navigational
history in an environment (18), and which of several discrete epi-
sodes an individual is currently recollecting (19). Such findings
highlight the potential of fMRI to read out categorical aspects of
the content of what an individual is currently retrieving from
memory. Although future work will bear on the forensic potential
of such demonstrations of mnemonic decoding, it is possible that
the pervasive phenomenon of false remembering (20) will limit
conceivable practical applications.

Limitations of EEG-Based Approaches to Mnemonic Classification.
Due to the inherently noisy nature of scalp recordings, extant
EEG-based techniques for probing experiential knowledge (21–
23) are generally unable to classify the mnemonic status of in-
dividual stimuli, but rather must average across a large number of
distinct memory probes to achieve their results. Thus, this ap-
proach principally assesses whether a certain set of stimuli are
recognized by the participant, whereas an ideal memory detection
technique should be capable of classifying the mnemonic status of
each individual probe stimulus. Furthermore, becauseEEG-based
techniques often rely on detecting the neural signature of an at-
tentional orienting response to "guilty knowledge" stimuli, they are
susceptible to a variety of countermeasures (5), in which partic-
ipants willfully manipulate their attentional state in such amanner
as to substantially diminish the classification accuracy of the pro-
cedure. Thus, current EEG-based memory detection techniques
may fall short of themethodological rigor, reliability, and scientific
acceptance necessary to meet the standards (24) (Federal Rules
of Evidence 702) for legal admissibility of scientific evidence (refs.
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25 and 26, but see ref. 27 for an alternative perspective). That said,
it remains an open question whether EEG-based methods might
be capable of achieving more reliable mnemonic decoding per-
formance if the EEG data were collected using a similar experi-
mental paradigm and submitted to an analogous trial-by-trial
multivariate pattern classification approach as that used in the
present fMRI study.

SI Methods
Participants. Two independent samples were enrolled. Sixteen
healthy right-handed adults (10 females; ages 18–27 yr,mean age=
21.4 yr) participated in Exp. 1 and seven participated in Exp. 2
(3 females; ages 19–30 yr, mean age = 22.7 yr). Participants were
recruited from the StanfordUniversity community and surrounding
areas. Written informed consent was obtained in accordance with
procedures approved by the institutional review board at Stanford
University. Participants received $20/h for their participation, and
the experimental sessions lasted≈3.5 h. For Exp. 1, data from three
additional individuals were excluded from analysis due to in-
adequate behavioral performance (one participant reported falling
asleep for brief intervals throughout the experiment, one exhibited
poor recognition memory: d′ = 0.39, and one had atypically slow
reaction times, with over 25% of responses taking> 5 s to execute).
For Exp. 2, data from two additional individuals were excluded due
to excessive head motion and poor recognition memory perfor-
mance (d′ = 0.43), respectively.

Stimulus Materials.A set of 420 color photographs of faces was used
inExps. 1 and2.The collectionof210male and210 female faceswas
comprisedof individualsofvariedagesandraces/ethnicities, andwas
compiled from an in-house stimulus collection as well as from the
following online databases (with permission, where applicable): AR
Face Database (http://cobweb.ecn.purdue.edu/~aleix/aleix_fa-
ce_DB.html), CalTech Database (www.vision.caltech.edu/html-
files/archive.html), CVL Face Database (www.lrv.fri.uni-lj.si/
facedb.html), FERET Database (www.nist.gov/humanid/feret/fer-
et_master.html), GTAV Face Database (http://gps-tsc.upc.es/
GTAV/ResearchAreas/UPCFaceDatabase/GTAVFaceDatabase.
htm), NimStim Face Stimulus Set (www.macbrain.org/resources.
htm), and the Productive Aging Laboratory FaceDatabase (https://
pal.utdallas.edu/facedb). Using Adobe Photoshop, the faces were
extracted from their backgrounds (with the hair included), manu-
ally retouched to ensure proper brightness and contrast, cropped in
a consistent manner (from the base of the neck to the top of the
head), and presented against a solid white background. For pre-
sentation outside the scanner (laptop computer) and inside the
scanner (projection screen), stimuli were displayed at 240 × 300
pixels on an 800 × 600-resolution screen.

Supplemental Procedural Details, Exp. 1. For the study phase of the
experiment, participants were explicitly instructed to attentively
view the faces and try their best to encode them into memory. To
ensure attention throughout the study session, participants were
instructed to press the space bar during the 1.5-s interstimulus
interval that followed each face. Participants were given an op-
portunity to take a brief break after every 30 stimuli; the entire
study session lasted ≈25 min. After completing the study session,
participants received detailed instructions describing the five
response options for the Explicit Recognition Task, with em-
phasis on the qualitative distinction between recollection (rec-
ognition accompanied by reinstatement of contextual details)
and high confidence recognition (putatively strong familiarity in
the absence of recollection, but see ref. 28). Participants were
instructed to respond to every face and were encouraged to do so
quickly, but accurately.
Proper understanding of the recognition task instructions was

confirmed during a practice testing session. Participants performed
20 practice trials on a laptop computer (10OLDand 10NEW faces,

intermixed; theOLDfaces consistedof thefirstfiveand lastfive faces
encountered in the study session). During the first 10 practice trials,
each face remained on the screen until the participant made a re-
sponse, and gave a verbal description to the experimenter as to the
basis for the particular recognition rating assigned to the face. After
each response, participants received feedback as to whether the face
wasactually studiedornovel.Thenext10 trialshadthesamestimulus
presentation parameters as in the actual fMRI experiment.

Supplemental Procedural Details, Exp. 2. In contrast to Exp. 1, during
the “study phase” of Exp. 2 (i.e., attractiveness ratings task), par-
ticipants were not informed that their memory for the faces would
eventually be tested. Moreover, during the first five scanning runs,
participants were instructed tomake amale/female judgment about
each face using the index and middle fingers of the right hand, with
button assignment counterbalanced across participants. Only
after completion of these five runs of the Implicit Recognition Task
were participants informed of the impending Explicit Recognition
memory test. At this point, participants were given instructions for
the Explicit Recognition Task; before scanning recommenced, they
practiced this task using the same stimuli and practice protocol as in
Exp. 1 (although participants did not give the experimenter verbal
descriptors justifying each response).

fMRI Data Acquisition. Functional images were collected using a
T2*-weighted 2D gradient echo spiral-in/out pulse sequence (TR
= 2.0 s; TE = 30 ms; flip angle = 75; FoV = 22 cm, in-plane
resolution = 3.4375 mm × 3.4375 mm) (29). Each functional
volume consisted of 30 contiguous slices acquired parallel to the
AC-PC plane. Slice thickness was 4.0 mm in Exp. 1 and 3.8 mm in
Exp. 2. Anatomical images coplanar with the functional data were
collected at the start of the experiment using a T2-weighted flow-
compensated spin-echo pulse sequence. A T1-weighted whole-
brain spoiled gradient recalled (SPGR) 3D anatomical image was
acquired at the end of the experimental session. Owing to tech-
nical difficulties, in Exp. 1, one participant’s fMRI dataset is
missing two functional runs (s102) and two additional participants
(s103 and s115) are each missing one run; in Exp. 2, one partic-
ipant’s dataset (s205) is missing one functional run from the Ex-
plicit Recognition Task, and for another participant (s201) one
run of the Implicit Recognition Task was discarded due to ex-
cessive nonresponses.

fMRI Data Analysis. The six initial volumes of each run were dis-
carded to allow for T1 equilibration. Following reconstruction,
a series of fMRI data preprocessing routines were implemented
using SPM5 (www.fil.ion.ucl.ac.uk/spm). Functional images were
corrected to account for differences in slice acquisition times
using sinc interpolation, with the center slice used as a reference
point. These data were then motion corrected using a two-pass,
six-parameter, rigid-body realignment procedure. If, during the
course of any trial, the participant moved at a rate of>0.5 mm/TR
or the global signal (averaged across all brain voxels) deviated by
more than 3.5 SDs from the run’s mean, then that trial’s data were
excluded from analysis. Each participant’s T1-weighted whole-
brain anatomical image was coregistered to the T2-weighted co-
planar anatomical image, and these in turn were coregistered to
the mean functional image. The coregistered T1 image was then
segmented into graymatter, whitematter, and cerebrospinal fluid,
and the gray matter image was spatially normalized to a gray
matter template image in Montreal Neurological Institute (MNI)
stereotactic space. The resulting transformation parameters were
used to warp all structural and functional images into MNI space,
and the functional images were resampled into 4-mm isotropic
voxels and spatially smoothed with an 8-mm FWHM Gaussian
kernel. Although not always used in MVPA analyses, spatial
smoothing can increase the signal-to-noise ratio, making large-
scale spatial patterns easier to detect. We found that smoothing

Rissman et al. www.pnas.org/cgi/content/short/1001028107 3 of 13

file://localhost/var/folders/vq/vqD4olrG2P8KGk+BYrOSeU+++TM/-Tmp-/WebKitPDFs-dzqXfL/www.pnas.org/cgi/content/short/1001028107
http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html
http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html
http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html
http://www.lrv.fri.uni-lj.si/facedb.html
http://www.lrv.fri.uni-lj.si/facedb.html
http://www.nist.gov/humanid/feret/feret_master.html
http://www.nist.gov/humanid/feret/feret_master.html
http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/GTAVFaceDatabase.htm
http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/GTAVFaceDatabase.htm
http://gps-tsc.upc.es/GTAV/ResearchAreas/UPCFaceDatabase/GTAVFaceDatabase.htm
http://www.macbrain.org/resources.htm
http://www.macbrain.org/resources.htm
https://pal.utdallas.edu/facedb
https://pal.utdallas.edu/facedb
http://www.fil.ion.ucl.ac.uk/spm


generally improved our classification accuracy by several per-
centage points.
Additional preprocessing steps were performed separately for

each functional run using MATLAB routines provided in the
Princeton MVPA Toolbox (www.csbmb.princeton.edu/mvpa).
Each voxel’s time series was high-pass filtered to remove fre-
quencies below 0.01Hz, detrended to remove linear and quadratic
trends, and z-scored, so as to normalize each voxel’s time series to
have a mean of zero and a variance of one. To reduce the fMRI
time series data to a single brain activity measure for each of the
400 test trials, the time points corresponding to the peak event-
related hemodynamic response—namely, those occurring 4–8 s
post stimulus, which translates to the third and fourth post-
stimulus TRs—were extracted and averaged. A common 23,000-
voxel inclusive mask was applied to the spatially normalized data
of all participants to exclude the cerebellum andmotor, premotor,
and somatosensory cortices, which prevented the classifier from
exploiting brain activity differences that might be linked to the
motor responses associated with the distinct mnemonic states.
Pattern classification analyses were implemented in MATLAB

using routines from the Princeton MVPA Toolbox and custom
code. The brain activity pattern associated with each trial was
labeled according to its objective mnemonic status (OLD or
NEW) and its subjective mnemonic status ("R old," "HC old,"
"LC old," "LC new," "HC new”), resulting in 10 trial types. Trials
in which no behavioral response was recorded were excluded
from analysis. In each classification analysis, we assessed how
accurately the classifier could discriminate between trials from
two distinct mnemonic conditions (abstractly referred to as Class
A vs. Class B), each of which was defined by a single trial type or
a combination of trial types. Except where otherwise indicated,
classification performance was assessed separately on each par-
ticipant’s data using a 10-fold cross-validation procedure. Trials
from Class A and Class B were randomly divided into 10 bal-
anced subsets, with each subset containing an equal number of
trials from each class (note that the division of trials into these 10
subsets was not constrained by scanning run boundaries, and
thus 10-fold cross-validation was used even for participants with
missing runs and for the Exp. 2 data, which had only five runs for
each task). The trials from 9 of these subsets were used for
classifier training, and the held-out trials were used as a test set
for assessing generalization performance. This process was iter-
atively repeated with each of the 10 subsets of trials held-out,
such that unbiased classifier outputs were measured for all of the
selected trials. Balancing the number of trials from each class
prevented the classifier from developing a bias to identify trials
as belonging to the more plentiful class, and ensured a theoreti-
cal null hypothesis classification accuracy rate of 50% and AUC
of 0.5 (analyses with shuffled class labels confirmed that chance
classification performance converged tightly around these levels
for all classification schemes, as well as across all levels of clas-
sifier “confidence”). Following this balancing procedure, the
data from each voxel were z-scored again, such that each voxel’s
mean activity level for Class A trials was the inverse of its mean
activity level for Class B trials. For any given classification, par-
ticipants with fewer than 18 trials/class were excluded, because
having an insufficient number of training examples can result
in unstable classifier performance. Table S2 reports the mean
number of trials contributing to each classification analysis. To
achieve stable results, all classification analyses were repeated 20
times, using a different subset of trials (from the more plentiful
class) each time, and the results were then averaged.
The two exceptions to our use of the 10-fold cross-validation

procedure were (i) the across-participant classification analyses
conducted on the Exp. 1 data and (ii) the across-task (within-
participant) classification analyses conducted on the Exp. 2 data.
The across-participant classification analyses were conducted using
a leave-one-participant-out procedure, in which a classifier was

trained on the combined set of data from all but one participant and
tested on the data from the held-out participant (note that this
analysis, like all of our classification analyses, still operated on the
data from individual trials). In Exp. 2, across-task classification
analyses were conducted using all trials from one task (e.g., the
Explicit Recognition Task) for training and all trials from the other
task (e.g., the Implicit Recognition Task) for testing.
A variety of machine learning algorithms have been successfully

used to decode cognitive states from fMRI data (30). Here, we
explored several algorithms, including two-layer back-propagation
neural networks, linear support vector machines, and regularized
logistic regression (RLR). Although all three performed well, we
found that RLR generally outperformed the other techniques, if by
only a small amount (see Fig. S6A for an example comparison of
classification accuracy across these techniques). Thus, we elected to
use RLR for all classification analyses reported in the manuscript.
The RLR algorithm implemented a multiclass logistic regression
function using a softmax transformation of linear combinations of
the features, as described in (31), with an additional ridge penalty
term as a Gaussian prior on the feature weights. This penalty term
provided L2 regularization, enforcing small weights, but not ag-
gressively driving the majority of the weights to zero, as would be
accomplished by L1 regularization (see Fig. S6B for a demonstra-
tion that L1 regularization failed to improve classification perfor-
mance beyond the levels achieved with L2 regularization). During
classifier training, the RLR algorithm learned the set of feature
weights that maximized the log likelihood of the data; feature
weights were initialized to zero, and optimization was implemented
with Carl Rasmussen’s conjugate gradient minimization function
(www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize) using
the gradient of the log likelihood combined with the L2 penalty.
The L2 penalty was set to be half of the additive inverse of

a user-specified λ parameter, multiplied by the square of the L2
norm of the weight vector for each class, added over classes. We
elected to set this free λ parameter to a fixed value of 1 for all
within-participant classification analyses reported in this manu-
script. This particular λ value was selected based on a cursory
examination of several different fixed λ levels, as well an evalu-
ation of classifier performance using a nested penalty optimiza-
tion routine (i.e., subdividing each training set into new training
and testing sets and determining the penalty parameter that
maximizes classification accuracy, and then subsequently apply-
ing this parameter to the original held-out testing set). Perfor-
mance gains, when present, were minimal when using higher
fixed settings of λ or when applying the computationally intensive
nested penalty optimization routine (Fig. S6B). For the across-
participant classification schemes, we found that a more ag-
gressive penalty setting of λ = 10,000 reduced over-fitting and
improved generalization performance by 5–7% on average; thus
this higher λ value was applied to all across-participant classifi-
cation analyses.
After fitting the RLR model parameters using the training set

data, each brain activity pattern (i.e., trial) from the test set was
then fed into the model and yielded an estimate of the probability
of that example being from Class A or Class B (by construction,
these two values always sum to one). These probability values were
concatenated across all cross-validation testing folds and then
ranked. The classifier’s true positive (hit) rate and false positive
(false alarm) rate were calculated at 80 fixed cutoff thresholds
along the probability continuum to generate ROC curves. The
AUC values associated with these curves were computed as de-
scribed in Fawcett (32) and can be formally interpreted as the
probability that a randomly chosen member of one class has
a smaller estimated probability of belonging to the other class
than has a randomly chosen member of the other class. The ROC
curves themselves provide further valuable information. For ex-
ample, if one’s goal is to sensitively detect examples of Class A,
and one is willing to misclassify a certain proportion of Class B
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examples to achieve this goal, the classifier’s decision boundary
(criterion) can be set toward the right of the curve. Conversely, if
one desires greater specificity in labeling examples of Class A and
is unwilling to tolerate many false positives, the decision boundary
can be set toward the left of the curve.
Prior fMRI studies using pattern classification techniques have

often implemented an initial feature selection step to eliminate
uninformative voxels, because the inclusion of these voxels some-
times reduces classification performance. An exploratory analysis
examining whether feature selection would impact our classifier
performance revealed that performance did not decline when all
23,000 voxels within our mask were included as features, although
classification performance was almost as good when nearly half this
number of voxels were used (Fig. S6C). This outcome likely reflects
the ability of the RLR classifier to effectively reduce the weight
values of voxels that provide little relevant information to the clas-
sifier. Thus, we elected not to use feature selection (beyond our
anatomical mask) for any of the classification analyses.
For each classification scheme, importance maps were con-

structed following the procedure described in previous MVPA
studies (16, 17).Avoxel’s importancevalueprovidesan indexofhow
much its signal increases or decreases influence the classifier’s
predictions. Following training, the logistic regression classification
procedure yields a set of β weight values reflecting each voxel’s
predictive value (with positive values indicating that activity in-
creases are generally associated with a Class A outcome and nega-
tive values indicating that activity increases are generally associated

with a Class B outcome). These β weights were then multiplied by
each voxel’s mean activity level for Class A trials (which, owing to
our trial balancing and z-scoring procedure, is the additive inverse of
its mean activity level for Class B trials). Voxels with positive values
for both activity and weight were assigned positive importance val-
ues, voxels with negative activity and weight were assigned negative
importance values, and voxels for which the activity and weight had
opposite signs were assigned importance values of zero (16, 17).
Group-level summary maps were created by averaging the impor-
tance maps of the individual participants. Owing to poor levels of
overall classification performance, importance maps for the analy-
ses of objective recognition offer little informative value and thus
are not reported. As a final note, although importance maps are
a useful tool to evaluate which voxels were used by the classifier,
these maps should not be interpreted as providing an exhaustive
assessment of which voxels are individually informative about the
distinction of interest.
Univariate data analyseswere conductedusingSPM5,with trials

modeled as events convolved with a canonical hemodynamic re-
sponse function. The resulting functions were entered into a gen-
eral linear model with motion parameters included as a covariate.
Linear contrasts were used to obtain participant-specific activa-
tion parameter estimates for each condition of interest. These
estimates were then entered into a second-level analysis, treating
participants as a random effect, using a one-sample t test against
a contrast value of zero at each voxel.
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Fig. S1. Classification accuracy measures (mean ± SEM) for all classifications presented in Fig. 1. Overall classification accuracy is computed as the percentage
of all trials for which the classifier’s guess was correct. This measure, although commonly used to index classification performance in fMRI MVPA studies,
effectively ignores the fact that each of the classifier’s guesses is associated with a probability estimate. If one restricts the classifier’s guesses to those test trials
for which it has a higher degree of “confidence," classification accuracy will generally increase. Classifier confidence can be indexed by the absolute value of
the difference of the two probability estimates for Class A and Class B. We ranked classification outputs according to this confidence metric and recomputed
classification accuracy when the top N% most confidently classified trials were included (here, the N values represent deciles). At each of these inclusion
thresholds, the trials that are excluded can be thought of as being assigned an “insufficient evidence” response from the classifier.
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Fig. S2. Classification importance maps (expanded montage of axial slices). For each Exp. 1 classification scheme, group mean importance maps highlight
voxels wherein activity increases drive the classifier toward a Class A prediction (green) or Class B prediction (violet). Importance values were arbitrarily
thresholded at ±0.0002 and overlaid on axial slices of the mean normalized anatomical image. Coordinates indicate z axis position in MNI space.
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Fig. S3. Spherical searchlight classification maps and corresponding univariate activation contrast maps for Exp. 1 analyses of subjective recognition states. For
each classification scheme, a group-averaged map of classifier AUC values from a spherical searchlight analysis are displayed in the upper panel (arbitrarily
thresholded at AUC > 0.55), and the corresponding univariate contrast (t map) is displayed in the lower panel (thresholded at P < 0.005, two-tailed, un-
corrected; warm colors indicate Condition A > Condition B and cool colors indicate the inverse pattern). Coordinates indicate z axis position in MNI space.
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Fig. S4. Neural representations of objective recognition. (A) Spherical searchlight classification map and corresponding univariate activation contrast map for
the Exp. 1 analysis of objective recognition (LC Hits vs. LC FAs), thresholded as described for Fig. S3. The orange arrow highlights a region of the right fusiform/
inferotemporal cortex that showed the most robust performance in the searchlight analysis. (B) Repetition suppression effects during the Implicit Recognition
Task (Exp. 2). A univariate statistical contrast of activity for NEW items > OLD items revealed repetition suppression effects in right fusiform cortex (blue arrow),
right anterior hippocampus extending into the amygdala (yellow arrow), and bilateral regions of perirhinal cortex (white arrows), all regions where such
effects are commonly observed for novel vs. repeated visual stimuli. Given the small sample size (n = 7), this statistical map is thresholded at a relatively liberal
uncorrected threshold of P < 0.01 (two-tailed). No regions exhibited suprathreshold activity in the reverse contrast (OLD > NEW). Coordinates indicate y axis
position in MNI space.
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Fig. S5. Across-participant memory decoding. A–D are identical in form to those in Fig. 1 A–D, with the critical exception being that here classification
performance indexes the ability to classify trials from each participant using a classifier that was trained exclusively on the brain data from the other par-
ticipants. As can be seen by comparing these figures to those in Fig. 1 A–D, performance on across-participant classification was generally comparable to that
on within-participant classification.
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Fig. S6. Effects of classification algorithm, penalty parameter selection, and feature selection on classification performance. (A) Comparison of Hits vs. CRs
classification performance across three different classification algorithms (RLR = L2 regularized logistic regression; SVM = linear support vector machine; NN =
two-layer back-propagation neural network). (B) Effects of penalty parameter settings for RLR classification performance. The linked data points represent
classification performance for three distinct classification schemes as a function of the L2 regularization parameter λ (as the value of this parameter was
progressively increased by tenfold steps). For all three classification schemes, performance was relatively constant across all λ settings. The final two data points
in each series represent classification performance when the value of the λ parameter was flexibly set for each participant using a nested cross-validation λ
optimization routine (opt.). The first of these points used an L2 regularization approach and the second used an L1 regularization approach; neither method
resulted in substantial performance changes. (C) Mean classification performance (AUC) as a function of the number of voxels included in the mask. Voxel
inclusion (i.e., feature selection) at each level was determined by selecting the top N voxels whose univariate activity allowed the maximal differentiation of
Class A vs. Class B, as assessed by an ANOVA (shown here for three different classification schemes). The numerical labels displayed for the uppermost data
series indicate the number of voxels included in the mask, with each successive data point between 25 voxels and 12,800 voxels constituting a doubling of the
number of features used for classification (the final data point represents the entirety of the 23,000 voxel mask). To avoid biasing the results, feature selection
was done separately for each cross-validation fold. Classification accuracy initially rose rapidly with small increments in the voxel inclusion count, with the rate
of improvement then diminishing as larger voxel counts were included. Error bars represent SEM.

Rissman et al. www.pnas.org/cgi/content/short/1001028107 11 of 13

file://localhost/var/folders/vq/vqD4olrG2P8KGk+BYrOSeU+++TM/-Tmp-/WebKitPDFs-dzqXfL/www.pnas.org/cgi/content/short/1001028107


Table S1. Recognition memory performance

Recognition judgment

R old HC old LC old LC new HC new

Exp. 1
Proportion of responses
OLD 0.178 (0.126) 0.229 (0.104) 0.295 (0.131) 0.247 (0.107) 0.050 (0.083)
NEW 0.011 (0.019) 0.058 (0.049) 0.229 (0.098) 0.519 (0.161) 0.183 (0.155)
Reaction time
OLD 1804 (410) 2138 (411) 2313 (404) 2219 (439) n/a
NEW n/a n/a 2324 (408) 2143 (411) 1909 (497)
Exp. 2
Proportion of responses
OLD 0.152 (0.100) 0.334 (0.083) 0.313 (0.060) 0.163 (0.070) 0.039 (0.057)
NEW 0.004 (0.011) 0.030 (0.028) 0.181 (0.047) 0.527 (0.160) 0.257 (0.155)
Reaction time
OLD 1729 (444) 1802 (301) 2035 (467) 1888 (401) n/a
NEW n/a n/a 1987 (313) 1893 (422) 1744 (368)

For Exp. 1 and Exp. 2, the upper rows report the mean proportion of objectively OLD and NEW stimuli assigned each of the five
subjective recognition judgments, and the lower rows report the mean RTs (ms) for each bin (“n/a” indicates that for most participants
there were insufficient trials to reliably index RT). Exp. 2 data are exclusively from the Explicit Recognition Task. SDs are in parentheses.

Table S2. Numbers of trials (per class) contributing to each classification scheme in Exp. 1

Hits vs.
CRs

Hits vs.
Misses

FAs vs.
CRs

LC Hits vs.
LC FAs

LC Misses vs.
LC CRs

R Hits vs.
LC Hits

R Hits vs.
HC Hits

HC Hits vs.
LC Hits

s101 88 n/a 62 38 n/a 38 34 34
s102 95 21 95 64 n/a 38 38 64
s103 127 47 29 24 44 42 39 39
s104 113 87 60 55 76 n/a n/a n/a
s105 125 70 32 n/a 37 24 24 24
s106 133 64 67 52 60 39 39 39
s107 131 68 56 54 65 19 19 25
s108 101 98 60 n/a 33 n/a 36 n/a
s109 118 72 72 63 48 n/a n/a 42
s110 115 85 23 19 67 25 28 25
s111 105 33 93 71 29 19 19 72
s112 137 62 38 38 60 21 21 40
s113 139 32 60 n/a 32 n/a 59 n/a
s114 129 44 70 67 41 18 18 42
s115 93 86 33 29 83 n/a n/a 37
s116 137 54 28 22 52 32 32 52
Mean 117.9 61.5 54.9 45.8 51.9 28.6 31.2 41.2
N 16 15 16 13 14 11 13 13

These values represent the total number of trials per class (training set + testing set) for each participant after the removal of outlier trials (i.e., excessive
motion or global signal) and after artificially balancing the number of trials in each class. Values coded as “n/a” indicate that fewer than 18 trials from each
class were available for classification, and thus the participant’s data were not analyzed for that particular classification scheme. Summary statistics at bottom
indicate mean number of trials per class and the number of participants (N) included in each classification analysis.
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Table S3. Classification performance levels within individual anatomical ROIs

ROI name No. vox Hits vs. CRs Hits vs. Misses FAs vs. CRs R Hits vs. HC Hits HC Hits vs. LC Hits LC Hits vs. LC FAs

L MFG 609 0.74 (4) 0.69 (1) 0.61 (8) 0.73 (2) 0.66 (3) 0.58 (2)
L SFG (lateral) 406 0.73 (5) 0.68 (3) 0.63 (4) 0.73 (4) 0.63 (14) 0.57 (7)
L SFG (medial) 356 0.74 (3) 0.68 (7) 0.62 (5) 0.72 (7) 0.65 (9) 0.57 (13)
L precuneus 384 0.71 (10) 0.68 (4) 0.62 (6) 0.73 (5) 0.65 (7) 0.56 (21)
L angular gyus 146 0.72 (7) 0.67 (9) 0.61 (13) 0.70 (15) 0.63 (17) 0.58 (4)
R SFG (lateral) 436 0.72 (6) 0.66 (12) 0.61 (10) 0.72 (8) 0.64 (12) 0.56 (22)
L inferior parietal 272 0.75 (2) 0.69 (2) 0.64 (3) 0.71 (12) 0.67 (2) 0.54 (54)
L superior parietal 210 0.71 (11) 0.68 (6) 0.62 (7) 0.71 (13) 0.68 (1) 0.54 (53)
R MFG 630 0.76 (1) 0.68 (5) 0.61 (9) 0.72 (9) 0.66 (4) 0.53 (65)
L mid-cingulate gyrus 266 0.69 (18) 0.67 (11) 0.59 (20) 0.73 (6) 0.65 (8) 0.55 (32)
R inferior parietal 144 0.69 (20) 0.68 (8) 0.60 (14) 0.74 (1) 0.65 (6) 0.54 (47)
L IFG (pars triangularis) 297 0.71 (12) 0.66 (16) 0.58 (26) 0.68 (21) 0.65 (10) 0.57 (14)
L IFG (pars opercularis) 131 0.70 (14) 0.66 (15) 0.59 (19) 0.66 (27) 0.63 (15) 0.57 (9)
R precuneus 373 0.71 (9) 0.67 (10) 0.64 (2) 0.71 (14) 0.62 (23) 0.54 (51)
L IFG (pars orbitalis) 203 0.70 (15) 0.64 (24) 0.58 (24) 0.68 (23) 0.65 (5) 0.56 (19)
R IFG (pars triangularis) 258 0.72 (8) 0.63 (25) 0.61 (11) 0.66 (28) 0.62 (21) 0.56 (18)
L mid-temporal gyrus 609 0.66 (30) 0.63 (28) 0.58 (23) 0.71 (11) 0.62 (19) 0.58 (5)
R superior parietal 224 0.69 (19) 0.66 (13) 0.66 (1) 0.70 (17) 0.64 (11) 0.53 (69)
L mid-occipital 415 0.66 (29) 0.63 (26) 0.58 (30) 0.73 (3) 0.60 (34) 0.57 (10)
R supramarginal gyrus 190 0.66 (33) 0.64 (19) 0.59 (17) 0.71 (10) 0.63 (16) 0.54 (39)
R IFG (pars opercularis) 161 0.67 (24) 0.59 (55) 0.59 (22) 0.66 (26) 0.64 (13) 0.57 (6)
L post-cingulate gyrus 60 0.66 (32) 0.64 (23) 0.57 (32) 0.63 (41) 0.59 (42) 0.59 (1)
R cuneus 184 0.68 (21) 0.64 (18) 0.59 (21) 0.60 (57) 0.58 (50) 0.57 (8)
R fusiform gyrus 311 0.61 (60) 0.57 (70) 0.56 (48) 0.60 (55) 0.57 (62) 0.58 (3)

Separate classification analyses were run using the voxels within each of 80 ROIs selected from the AAL library. For each of six classification schemes, mean
classification performance levels (AUC; displayed as the decimal value in each cell) based on the 80 ROIs were ranked (ordinal rankings displayed in paren-
theses). The top 10 performing ROIs for each classification scheme are included in this table, resulting in a total of 25 ROIs (ordered by mean rank across the six
schemes). For the LC Misses vs. LC CRs classification, no ROIs exhibited AUC performance levels above 0.54, and thus those data are excluded from this table. L,
left; R, right; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus.
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