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The inherently multivariate nature of functional brain imaging data

affords the unique opportunity to explore how anatomically disparate

brain areas interact during cognitive tasks. We introduce a new method

for characterizing inter-regional interactions using event-related func-

tional magnetic resonance imaging (fMRI) data. This method’s

principle advantage over existing analytical techniques is its ability to

model the functional connectivity between brain regions during distinct

stages of a cognitive task. The method is implemented by using

separate covariates to model the activity evoked during each stage of

each individual trial in the context of the general linear model (GLM).

The resulting parameter estimates (beta values) are sorted according to

the stage from which they were derived to form a set of stage-specific

beta series. Regions whose beta series are correlated during a given

stage are inferred to be functionally interacting during that stage. To

validate the assumption that correlated fluctuations in trial-to-trial

beta values imply functional connectivity, we applied the method to an

event-related fMRI data set in which subjects performed two sequence-

tapping tasks. In concordance with previous electrophysiological and

fMRI coherence studies, we found that the task requiring greater

bimanual coordination induced stronger correlations between motor

regions of the two hemispheres. The method was then applied to an

event-related fMRI data set in which subjects performed a delayed

recognition task. Distinct functional connectivity maps were generated

during the component stages of this task, illustrating how important

and novel observations of neural networks within the isolated stages of

a cognitive task can be obtained.
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Introduction

The vast majority of functional magnetic resonance imaging

(fMRI) studies have utilized univariate statistical analyses in an

attempt to localize activity to brain regions involved in specific

cognitive operations. However, brain regions do not act in isolation

(Mesulam, 1990) and there is a rapidly growing interest in the field

to use fMRI to explore how regions of the brain communicate with

one another during cognitive tasks. The ability of fMRI to rapidly

sample blood oxygenation level dependent (BOLD) activity

throughout the entire functioning brain makes it an ideal tool for

studying inter-regional interactions. Such interactions have typi-

cally been characterized by identifying regions that show correlated

fluctuations in their fMRI time series data, with the belief that

temporal correlations in BOLD signal might reflect synchronous

neural firing in the communicating regions. The term bfunctional
connectivityQ was introduced by Friston et al. (1993) to describe the
btemporal correlation between spatially remote neurophysiological

eventsQ, as assessed by functional neuroimaging data.

Several early explorations of functional connectivity in fMRI

data focused on inter-regional interactions during the resting state,

when the subject was not explicitly engaged in a cognitive task.

These studies demonstrated that sensorimotor regions exhibit

correlated low frequency fluctuations in their fMRI time series

during the resting state and that these correlations could not be

attributed to higher frequency physiological noise (Biswal et al.,

1995, 1997; Lowe et al., 1998; Stein et al., 2000; Xiong et al.,

1999). The use of resting state data was motivated by the notion

that spontaneous firing of functionally connected neurons was all

that was needed to induce correlations in the BOLD signal. Later

studies began to search for regions whose time series were

correlated during the continuous performance of a cognitive task

as assessed in a blocked design experiment. For example, Lowe et

al. (2000) identified a network of regions that showed stronger

correlations with the dorsolateral prefrontal cortex (DLPFC) during

a two-back spatial working memory task than during a zero-back

motor control task. Hampson et al. (2002) showed that the low

frequency correlation that exists between Broca’s and Wernicke’s
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area at rest increases when the language system is actively engaged

by a listening task. By having subjects engage in a cognitive task

for an extended block of time (~45-s epochs in these two studies),

the inter-regional correlations observed in the fMRI time series

data collected during these epochs can be attributed to the ongoing

cognitive processes taking place during these task periods.

The use of a blocked design in fMRI experiments has the

advantage of allowing the functional data collected during the

performance of one task to be clearly separated from that collected

during another task or rest period. It also serves to provide a large

number of temporally contiguous data points, which makes

correlation computations robust and sensitive to lower frequency

fluctuations. However, a major shortcoming of using blocked

design experiments to model brain activity or functional con-

nectivity is that there is no way to estimate what proportion of the

evoked BOLD response is attributable to each of the cognitive

subcomponents of the task (D’Esposito et al., 1999b). For

example, in a two-back working memory task the subject must

continuously encode new stimuli, update and maintain mnemonic

representations of past stimuli, and decide and respond whether

each new stimulus matches the one presented two stimuli

previously. Because all of these cognitive operations take place

virtually simultaneously, it is impossible to tease them apart

temporally. Thus, any statements made about the neural basis of

working memory would apply to all processes associated with this

task.

One manner of overcoming this drawback of the blocked

design is by adopting an event-related design (Postle et al., 2000;

Zarahn et al., 1997). With an event-related design it is possible to

study the subcomponents of a cognitive process, such as working

memory, by employing a task with temporally distinguishable

stages. For example, in a typical delayed recognition task, the

subject must first encode a visually presented cue stimulus, then

hold this percept in mind across an extended delay interval, and

finally make a decision as to whether or not the maintained percept

matches a probe stimulus. Event-related designs have been

extensively applied to investigate the stages of working memory

using the delayed recognition task (Courtney et al., 1997;

D’Esposito et al., 1999a; Rama et al., 2001; Ranganath and

D’Esposito, 2001; Rowe et al., 2000; Sakai et al., 2002; Sala et al.,

2003; Zarahn et al., 1999). However, while univariate statistical

methods exist for obtaining separate estimates of brain activation

during each of these distinct processing stages, currently available

multivariate methods for modeling functional connectivity, such as

time series correlations, are not capable of evaluating inter-regional

interactions within closely spaced stages of a task. In this paper, we

present a new method for characterizing functional connectivity in

an event-related fMRI experiment that is capable of measuring

inter-regional correlations during distinct stages of cognitive task.

The method employs a standard general linear model (GLM)

approach for estimating stage-specific activity, but adapts the

model such that separate parameter estimates are computed for

each individual trial and then used as the dependent data in a

correlation analysis. We will first validate this method by applying

it to a recently published event-related fMRI data set utilizing a

simple motor task where there are expected results based on the

findings of a bivariate analysis employing coherence (Sun et al.,

2004), as well as electrophysiological evidence. Next, we will

apply this method to an fMRI data set employing a more complex

multistage cognitive task, a delayed recognition working memory

task.
Methods

Beta series correlations

To understand how this method is capable of characterizing

stage-specific functional interactions, it is important to review how

individual stages of a cognitive task can be modeled to obtain

estimates of the underlying brain activity. If the fMRI BOLD signal

were a direct measure of neural activity, then determining which

portions of the measured signal were evoked by different stages,

such as the individual stages of a trial of a delayed recognition

task—cue, delay, and probe—would be relatively straightforward.

Much as a neurophysiologist would analyze single unit data, one

could simply subdivide the signal into three discrete trial periods.

However, our ability to correctly attribute the measured BOLD

signal to the each of the subcomponents of a trial is complicated by

the fact that the hemodynamic response acts as a low-pass filter on

the neural activity, peaking 4–6 s after the onset of neural activity

and then decaying slowly back to baseline. Any attempt to study

regional activity or functional connectivity during the individual

stages of a cognitive task using fMRI must take this basic principle

into account.

One effective and widely used method of determining how

much of the measured BOLD signal is attributable to each stage of

a multistage trial involves modeling the data with a set of

covariates in the context of the general linear model (GLM)

(Postle et al., 2000; Zarahn et al., 1997). For example, when

applied to a delayed recognition task, separate covariates are

constructed to represent neural activity associated with the cue,

delay, and probe components of the task. To convert these

covariates from models of predicted neural activity to models of

predicted BOLD activity, they are convolved with an estimate of

the hemodynamic response function (HRF). Since the transition

from cue to delay period in a delayed recognition task is

instantaneous in both cognitive and neural terms, it might seem

that the delay period should be modeled as a block of activity

beginning immediately after the cue and continuing until the

presentation of the probe. However, such a model would result in a

high level of collinearity among the adjacent cue, delay, and probe

covariates, and the delay period covariate would invariably capture

some of the residual encoding activity, contaminating its estimate

of maintenance-related activity. Simulations by Zarahn et al.

(1997) suggest that the onsets of temporally adjacent covariates

should be spaced at least 4 s apart to minimize this collinearity. By

placing the onset of the delay covariate in the middle of the delay

interval, each covariate can explain a largely unique source of

variance in the signal. This approach has been used to successfully

model delay period activity in numerous published studies (Barde

and Thompson-Schill, 2002; Druzgal and D’Esposito, 2003;

Pessoa et al., 2002; Postle and D’Esposito, 1999; Rypma and

D’Esposito, 1999). In estimating the parameters of the GLM, the

cue, delay, and probe covariates are scaled to best fit the observed

fMRI time series of each voxel, such that their linear combination

minimizes the sum of the squared differences between the observed

data and the model predictions. This yields a set of parameter

estimates (i.e., beta values) for each voxel that reflect how much of

that voxel’s activity can be attributed to the individual stages of a

task (i.e., the cue, delay, and probe phases). In most fMRI analyses,

these parameter estimates would be scaled by their error term

(unexplained variance), and turned into statistical parametric maps

of brain activity. Conclusions could then be made about the brain
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regions involved in the various subcomponents of a working

memory task.

The classic univariate method for estimating activity during the

individual stages of a delayed recognition task uses a single cue,

delay, and probe covariate to model the data obtained from many

experimental trials, essentially treating any trial-to-trial variability

as noise. In contrast, the multivariate method we propose for

modeling functional connectivity during the temporally adjacent

stages of a multistage cognitive task, although relying on the same

principles used to model stage-specific univariate activity, capital-

izes on this trial-to-trial variability and uses it to characterize

dynamic inter-regional interactions. The premise of this method is

that if two areas of the brain are functionally interacting with each

other during a particular stage of a cognitive task, then the amount

of activity that the two areas exhibit during that stage should be

correlated across trials. The goal is to obtain a reasonable

measurement of the magnitude of stage-specific activity that each

voxel exhibits on each of many task trials, and then search for other

voxels in the brain that show correlated fluctuations across trials.

This is accomplished by constructing a GLM in which every stage

of every trial is modeled with a separate covariate, so that trial-to-

trial parameter estimates of stage-specific activity can be obtained.

These parameter estimates (beta values) can then be sorted

according to the stage from which they were derived (what we

will refer to as a beta series) and correlated across regions to obtain

a measure of functional connectivity (beta series correlation)

during each of the individual task components.

Validation of the beta series correlation method

Before illustrating how this method of obtaining stage-specific

estimates of inter-regional correlations is implemented in the

analysis of multistage cognitive tasks, such as the delayed

recognition task, for which it was specifically designed, it is

necessary to demonstrate that it can provide a neurophysiologically

plausible measure of functional connectivity between brain

regions. To accomplish this, we first demonstrate that the method

can be validly applied to single-stage experimental tasks; that is,

tasks in which the processing that occurs during each trial can be

conceptualized and modeled as a single event. An ideal task is one

in which the degree of functional connectivity between two regions

is expected to change as a function of task condition in an intuitive

way. To this end, we applied the beta series correlation method to a

simple motor task to test a straightforward hypothesis about

functional connectivity between motor areas of the two cerebral

hemispheres.

The goal of this validation study was to replicate the results of

Sun et al. (2004). In their event-related fMRI study, they used

coherence analysis2 to assess the strength of interhemispheric

interactions in two sequence tapping tasks requiring varying

degrees of bimanual coordination. Based on evidence from EEG

studies and experiments on acollosal patients (Andres et al., 1999;

Gerloff and Andres, 2002; Jeeves et al., 1988; Ohara et al., 2001;

Serrien and Brown, 2002), they predicted that a task demanding

greater bimanual coordination would induce greater functional

connectivity between the hemispheres. Indeed, their results

revealed greater coherence between right and left motor cortices
2 Coherence measures the linear time-invariant relationship between

two time series and is essentially the spectral analog of correlation.
when subjects performed a task requiring more bimanual coordi-

nation, despite the two tasks showing no significant differences in

their univariate activity.

Here, using the fMRI data set collected by Sun et al. (2004), we

sought to determine if the same effect is obtained using the beta

series correlation method. The specific details of the data collection

methods and behavioral tasks were described in Sun et al. (2004),

and are summarized below.

Subjects and experimental task

Twelve right-handed subjects participated in the study. Before

scanning, the subjects learned two motor sequences. In the Right-

then-Left sequence, subjects played a sequence of four keystrokes

with the fingers of their right hand and then a different sequence of

four keystrokes with the fingers of their left hand. In the

Interleaved sequence, subjects also played a sequence of eight

keystrokes, but alternated back-and-forth between hands with each

keystroke. Subjects were trained until they could accurately play

each sequence in less than 2500 ms. In the scanner, subjects

performed a total of 36 trials of each type. On each trial, subjects

received a visual cue instructing them which sequence to play.

Trials were presented in a randomized fashion and spaced 16–20 s

apart. In addition to this task, subjects performed a visuomotor

response task to empirically derive a hemodynamic response

function (HRF) (Aguirre et al., 1998).

fMRI data acquisition and processing

Functional images were acquired on a 4.0 T Varian scanner

using a two-shot gradient-echo EPI sequence (TR = 543 ms per

half k-space, TE = 28 ms, matrix size = 64 � 64, FOV = 22.4 cm2).

Each volume consisted of ten 5-mm-thick axial slices with a 1-mm

gap between slices. fMRI data processing included a linear time-

interpolation algorithm to double the effective sampling rate,

temporal sync interpolation to correct for between-slice timing

differences in image acquisition, motion correction using a six-

parameter rigid-body transformation algorithm (Friston et al.,

1995), and spatial smoothing with a 7-mm FWHM Gaussian

kernel. For the univariate and beta series correlation analyses, the

time series of each voxel was normalized by its mean signal value.

Univariate analysis

The reference functions used to model task related activity in

each of the two conditions were constructed by convolving the

subject’s empirically derived HRF (Aguirre et al., 1998) with a

function specifying the onset of each trial of that condition, which

in turn was convolved with a 2-s block (the average time it took

subjects to play a sequence) to account for the extended duration of

neural processing. These covariates were entered into the general

linear model for analysis with VoxBo (http://www.voxbo.org).

Region-of-interest (bseed Q) selection
A commonly used approach for identifying networks of

functionally connected brain regions involves defining a cluster

of activated voxels in a region of interest (ROI) and using this

bseedQ to determine which voxels throughout the entire brain are

functionally interacting with the seed (Cordes et al., 2000; Della-

Maggiore et al., 2000; Greicius et al., 2003; Lowe et al., 2000;

Quigley et al., 2001; Stein et al., 2000). The seed region is

generally chosen based on its known involvement in the behavioral

task and the researcher’s interest in characterizing its interactions

with other regions of brain. In this case, the right and left primary
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motor cortices (right M1 and left M1) were used as seeds because

the experiment was designed to test a specific hypothesis regarding

interhemispheric interactions between cortical motor regions.

These seeds were identified separately for each subject in their

native space (i.e., not spatially normalized) by selecting the 10

voxels with the most task-related activity as determined by an F

test, collapsed across task conditions, in the right and left

hemisphere primary motor cortices.

Coherence analysis

Since the trials of the two task conditions occurred in a

randomly intermixed fashion, the time series data were first

reorganized into condition-specific time series by segmenting the

data set into 16-s blocks (32 TRs) beginning with the instruction

cue of each trial. Each segment was mean-centered, windowed

using a 4-point split-cosine bell, and then concatenated with

segments of the same condition. Coherence maps were constructed

for each subject in their native space by calculating the band-

averaged low frequency coherence (0–0.15 Hz) of the condition-

specific time series of the seed (averaged across the 10 seed voxels)

with that of all other voxels in the brain. Since coherence maps

were generated separately for each of the two conditions and with

each of the two seeds, four maps were produced for each subject.

Beta series correlation analysis

To implement the correlation analysis, the univariate analysis

described above was adapted such that the magnitude of the task-

related BOLD response was estimated separately for each of the 72

experimental trials. This was implemented in VoxBo by constructing

a design matrix with 72 covariates of interest, each of which

modeled the activity evoked during a single trial as a 2-s block (time-

locked to the onset of the trial) convolved with the subject’s HRF.

The model also included covariates of no interest to model the

effects of shifting signal levels across runs. A band pass filter was

used to attenuate frequencies above 1 Hz and below 0.01 Hz. The

least-squares solution of the GLM yielded a unique parameter

estimate (beta value) for each trial. These beta values were then

sorted according to whether they were derived from a Right-then-

Left trial or an Interleaved trial, yielding a set of 36 beta values for

each condition for every voxel in the brain. We refer to such a set of

condition-specific beta values as a bbeta seriesQ. Under the

assumptions of this method, the extent to which two brain voxels

interact during a given task condition is quantified by the extent to

which their respective beta series from that condition are correlated.

To attain a parallel analysis with the coherence analysis described

above, we used the same right and left M1 seeds to produce maps of

functional connectivity. By computing the correlation of the seed’s

beta series (averaged across the 10 seed voxels) with the beta series

of all other voxels in the brain, condition-specific seed correlation

maps were generated. All correlation analyses were conducted using

Matlab 6.5 (http://www.mathworks.com).

To allow statistical conclusions to be made based on the

correlation magnitudes, we applied an arc-hyperbolic tangent

transform (Fisher, 1921) to the correlation coefficients of all brain

voxels. Since the correlation coefficient is inherently restricted to

range from �1 to +1, this transformation serves to make its null

hypothesis sampling distribution approach that of the normal

distribution. The transformed correlation coefficients were then

divided by their known standard deviation (1=
ffiffiffiffiffiffiffiffiffiffiffiffi

N � 3
p

, where N is

the number of data points used to compute the correlation

coefficient) to yield z scores.
To assess the map-wise significance of the correlation findings at

the group level, the z-transformed correlation maps of the individual

subjects were spatially normalized into standard MNI atlas space

using routines from SPM99 (http://www.fil.ion.ucl.ac.uk/spm).

Group level random-effects t tests were then conducted using the

fidl analysis package (http://www.nil.wustl.edu/~fidl) to identify

voxels for which the mean of the individual subjects’ transformed

correlation coefficients was reliably greater than zero. All statistical

maps are displayed using MRIcro (http://www.mricro.com).

Delayed recognition task

The bimanual motor task described above provides a strong test

of the validity of the beta series correlation method’s primary

assumption; namely, that correlated fluctuations in trial-to-trial beta

values between voxels are indicative of functional interactions

between brain regions. However, other methods of assessing

functional connectivity, such as coherence analysis or even

standard time series correlation can be validly applied to such a

data set because the fMRI signal evoked by the two different

conditions of interest can be separated temporally. In fact, for the

coherence analysis, the data set was essentially treated as a blocked

design. Despite the fact that the subject only engaged in the motor

task for the first 2 s of the trial, 16 s (or 32 TRs) of fMRI data were

taken from each trial, and these miniblocks of single trial activity

were concatenated into a larger block from which inter-regional

coherence in the low frequency bands was computed.

Below, we illustrate how the beta series correlation method can

be applied to obtain separate maps of functional connectivity

during the individual subcomponent stages of a multistage

cognitive task. We applied this method to an event-related fMRI

data set employing a fairly standard visual delayed recognition

task. This data set has been previously analyzed with univariate

methods, and the results have been described elsewhere (Ranga-

nath and D’Esposito, 2001; Ranganath et al., 2003).

Subjects and experimental task

Eight right-handed subjects participated in this study. Subjects

performed three runs of 18 delayed recognition trials for a total of

54 trials. On each trial, subjects were presented with a single

grayscale face stimulus for a duration of 1 s, followed by a fixation

cross for 7 s, followed by a probe face for 1 s. Subjects were

instructed to pay careful attention to the first face in each trial and

maintain a mental image of that face throughout the delay period.

When the probe face appeared, subjects made a key press with the

left index finger if it matched the first face (50%) and the right

index finger if it did not (50%). Each trial was followed by a 13-s

intertrial interval (ITI).

In addition to this task, subjects performed a visuomotor

response task to empirically derive a hemodynamic response

function (HRF) (Aguirre et al., 1998) and a blocalizerQ task in

which they passively viewed blocks of face and object stimuli to

identify face-sensitive regions of the fusiform cortex (Kanwisher

et al., 1997).

fMRI data acquisition and processing

Functional images were acquired on a 1.5 T General Electric

scanner with a gradient-echo EPI sequence (TR = 2000 ms, TE =

50 ms, matrix size = 64 � 64, FOV = 24 cm2). Each functional

volume consisted of 21 contiguous 5-mm-thick axial slices. FMRI

data processing included sync interpolation in time to correct for
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between-slice timing differences in image acquisition, motion

correction using a six-parameter, rigid-body transformation algo-

rithm (Friston et al., 1995), normalization of the time series of each

voxel by its mean signal value, and spatial smoothing with an 8-

mm FWHM Gaussian kernel.

Univariate analysis

BOLD responses during the cue, delay, and probe stages of the

task were modeled as impulses of activity convolved with the

individually derived HRF. To minimize collinearity between

temporally adjacent covariates, onsets were spaced 4 s apart, such

that the cue covariate was placed at the start of the trial, the delay

covariate was positioned 4 s into the trial, and the probe covariate

was positioned 8 s into the trial. These three covariates of interest

were entered into the general linear model for analysis with VoxBo.

The model included a set of separate covariates to model the cue,

delay, and probe stages of those trials for which the subject

responded incorrectly. The model also included covariates of no

interest to model the effects of shifting signal levels across runs. A

band pass filter was used to attenuate frequencies above 0.25 Hz

and below 0.01 Hz.

Individual subject activation maps were spatially normalized

into standard MNI atlas space using routines from SPM2. Group

level random-effects analyses were performed separately for the

cue, delay, and probe stages of the task to test whether the mean of

the individual subjects’ parameter estimates at each voxel was

reliably greater than 0.

Seed selection

The seven contiguous voxels in each subject’s right fusiform

gyrus that exhibited the strongest response preference to faces

versus objects in the localizer task, as assessed by a t test, were

defined as that subject’s fusiform face area (FFA) (Kanwisher et al.,

1997) and used as a seed in the subsequent correlation analyses.

The FFA has been identified as a region of the visual association

cortex that is selective for viewing faces (Kanwisher et al., 1997;

Puce et al., 1995) and has been widely applied to fMRI analyses of

stimulus-specific visual association cortex (Druzgal and D’Espo-

sito, 2003; Lehmann et al., 2004; O’Craven and Kanwisher, 2000;

Rossion et al., 2003b; Wojciulik et al., 1998). While face-selective

voxels can be found in the fusiform gyri bilaterally in most

individuals, we chose to use a right-lateralized FFA seed since

lesion, electrophysiological, neuroimaging, and behavioral studies

have shown the right hemisphere to play a dominant role in the

perceptual analysis and recognition of faces (Bentin et al., 1996;
Fig. 1. Schematic of temporally shifted covariates modeling stage-specific activit

hypothetical BOLD response in a task-related voxel across three trials. Arrows ind

responds more strongly to the cue and probe stages of the task than the delay perio

fitting a set of hemodynamic response functions to the data from each trial in the

parameter estimate, or beta value, reflecting the amount that the covariate scales
Hillger and Koenig, 1991; Kanwisher et al., 1997; Landis et al.,

1988; Rossion et al., 2003a,b).

Beta series correlation analysis

The univariate analysis described above was adapted such that

every stage of every trial was modeled with a separate covariate

(Fig. 1). Since there were 54 delayed recognition trials, each with

three separate task stages, there were a total of 162 covariates of

interest entered into the GLM. The model also included covariates

of no interest to model the effects of shifting signal levels across

runs. A band pass filter was used to attenuate frequencies above

0.25 Hz and below 0.01 Hz. The resulting parameter estimates

(from correct trials only) were sorted according to the stage from

which they were derived to form a beta series for each stage,

reflecting the estimated activity of each voxel in each of the

experimental trials that the subject performed correctly. While

separate beta series could theoretically be constructed for the cue,

delay, and probe stages of the incorrect trials, this was not done in

this case due to the insufficient number of error trials (mean

accuracy on this task was 97.5%). Stage-specific whole brain

correlation maps were obtained by calculating the correlation of the

FFA seed’s beta series with that of all brain voxels. This was done

separately for each of the task stages. The arc hyperbolic tangent

transform was then implemented as described above (see Validation

study methods), and the transformed correlation coefficients were

divided by their standard deviation to produce a map of z scores.

To construct group correlation maps, the z-transformed

correlation maps of the individual subjects were spatially

normalized into standard MNI atlas space using routines from

SPM2. Group level random-effects t tests were then conducted

separately for the cue, delay, and probe stages of the task to

identify voxels for which the mean of the individual subjects’

transformed correlation coefficients was reliably greater than 0.
Results

Validation study

The Right-then-Left and Interleaved task conditions showed

highly similar profiles of BOLD activity when analyzed with

standard univariate analysis procedures (Sun et al., 2004). Both

tasks produced activations bilaterally in primary motor cortex

(M1), premotor cortex, supplementary motor area (SMA), and

posterior parietal cortex (PPC), and a group level contrast revealed
y for each trial of a delayed recognition task. The black line represents the

icate the onsets of the cue and probe stimuli. While this voxel consistently

d, its activity profile varies from trial to trial. This variability is captured by

context of the general linear model. Each covariate (colored lines) yields a

to best fit the BOLD data from a single stage of a single trial.
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no significant activation differences between the two conditions.

Group analysis of the coherence data, also presented in Sun et al.

(2004), revealed that the left hemisphere M1 seed showed greater

coherence with the contralateral motor/premotor cortex in the

Interleaved condition than in the Right-then-Left condition.

Similarly, the right hemisphere M1 seed showed greater coherence

with the left motor/premotor cortex in the Interleaved condition.

Thus, coherence analysis revealed a difference between the two

tasks conditions that was not apparent from examining the

univariate analysis.

Here, we first present the results of univariate, coherence, and

beta series correlation analysis from a single subject to demonstrate

the strength of individual subject analysis in native space (Fig. 2a–

c). Next, to show that the results of the correlation analysis are

robust at the group level, we present group level random-effects t-

maps of the correlation data for each of the conditions (Fig. 2d).

Closely mirroring the results of the group level univariate

analysis described by Sun et al. (2004), the single subject

univariate analysis presented here (Fig. 2a) also yielded highly

similar activation profiles for the Right-then-Left and Interleaved

task conditions. This subject’s coherence data were also repre-

sentative of the group level coherence analysis reported by Sun et

al. (2004). Coherence analysis using a left M1 seed revealed

greater coherence in motor/premotor areas of the contralateral

hemisphere in the Interleaved condition than in the Right-then-

Left condition (Fig. 2b). When the same left M1 seed was used in

the correlation analysis, the difference in interhemispheric func-

tional connectivity between the two conditions was even more

dramatic (Fig. 2c). As with the coherence analysis, right hemi-

sphere motor/premotor areas revealed greater correlation with the

left M1 seed in the Interleaved condition. A similar profile of

effects emerged when coherence and correlation analyses were

conducted using a right M1 seed (data not shown).

As an additional demonstration that the beta series correlation

method is sensitive to the increase in functional connectivity

between the motor cortices of the two hemispheres in the Interleaved

condition, we computed the correlation between the beta series of

this subject’s right and left M1 seeds in each of the two conditions

(Fig. 3). As these scatter plots show, the correlation between the

right and left M1 seeds in the Interleaved condition (r = 0.710) is

nearly double that seen in the Right-then-Left condition (r = 0.378).

Thus, in the Interleaved condition, the magnitude of activation

evoked in rightM1 on any given trial (as indexed by its beta value) is

tightly coupled to the magnitude of activation evoked in left M1 on

that same trial. The parameter estimates of single trial activity
Fig. 2. Comparison of univariate, coherence, and beta series correlation data

in the bimanual motor task. (a) A representative univariate activation map

from a single subject reveals a very similar profile of brain activity in the

Interleaved and Right-then-Left conditions. (b and c) Coherence and

correlation analyses using a left M1 seed (located within the blue circle)

both reveal stronger functional connectivity with the primary motor cortex

of the contralateral hemisphere (blue arrow) in the Interleaved condition

than the Right-then-Left condition. (d) Results of the beta series correlation

analysis at the group level, using a left M1 seed. The left M1 seed correlates

more strongly with contralateral motor regions in the Interleaved condition.

These group t-maps are shown thresholded at P b 0.01 (Bonferroni

corrected) and overlaid on an MNI-normalized template brain. (For

interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
obtained for the Right-then-Left trials are much more weakly

correlated between these primary motor areas.



Fig. 3. The correlation between the beta series of the right and left hemisphere M1 seeds for a single subject in each task condition. This figure illustrates the

stronger coupling between single trial beta values in the right and left M1 seeds during the performance of Interleaved trials (a) than during the performance of

Right-then-Left trials (b). Each dot represents the data from a single trial.
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When the correlation maps of each of the 12 subjects were

spatially normalized and submitted to a group level random-effects

analysis, a pattern of results similar to that seen in the single subject

analysis emerged. Fig. 2d shows the group correlation t-maps for

the Interleaved and Right-then-Left conditions when left M1 was

used as the seed. Motor, premotor, and parietal regions contralateral

to the left M1 seed were strongly correlated with the seed in the

Interleaved condition. In the Right-then-Left condition, both the

magnitude and extent of these interhemispheric correlations were

substantially diminished. Motor and premotor regions ipsilateral to

the left M1 seed also appear to be more strongly correlated with the

seed in the Right-then-Left condition than the Interleaved condition.

A similar effect was effect was noted in the group coherence data

reported by Sun et al. (2004). When the right M1 was used as a
Fig. 4. Group-level t-maps of the univariate and beta series correlation data in the d

prefrontal and parietal cortices during the cue and probe stages of the task, but not

using the right FFA as a seed reveals that these prefrontal and parietal regions ar

although during the probe stage the correlation with the right parietal cortex is

thresholded at P b 0.005 (two-tailed, uncorrected). The beta series correlation t-m

which meets a corrected threshold of P b 0.05 using Gaussian random fields (Fr

shown overlaid on an MNI-normalized template brain. (For interpretation of the

version of this article.)
seed, the group level correlation analysis similarly revealed

increased correlations with motor, premotor, and parietal regions

contralateral to the seed in the Interleaved condition relative to the

Right-then-Left condition (data not shown).

Delayed recognition task

Beta series correlation analysis was performed on a data set of

eight subjects performing a delayed recognition task as described in

the methods. Here, we highlight several important observations

regarding differences and similarities between univariate and beta

series correlation data. The findings reported here are not

comprehensive surveys of the correlation data obtained from this

group analysis. They are intended only to illustrate the power of this
elayed recognition task. (a) The univariate data reveal activations in the right

during the delay period (red arrows). (b) In contrast, the correlation analysis

e significantly correlated with the seed during all three stages of the task,

diminished. For visualization purposes, the univariate activation t-map is

ap is thresholded more stringently at P b 0.0005 (two-tailed, uncorrected),

iston et al., 1994) with a cluster extent requirement of 34 voxels. Data are

references to color in this figure legend, the reader is referred to the web
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method in offering a unique set of data capable of generating novel

interpretations distinct from the classic univariate analysis. The

results of the group level analysis of the univariate data are

depicted in Fig. 4a. During the cue stage of the delayed recognition

task, we highlight significant activations (red arrows) that can be

observed in the right posterior inferior frontal gyrus (IFG)

bordering the premotor area, as well as the right intraparietal

sulcus (IPS). During the delay period, no significant activation is

seen in these same regions of the right IFG and right IPS. During

the probe stage, widespread activations can again be seen in the

right IFG and IPS in the same regions activated during the cue. Fig.

4b shows the results of the group level analysis of the correlation

data using a right fusiform face area (FFA) seed. Since the FFA is

considered to be an important brain region for face processing, it is

of interest to determine which cortical regions interact with the

FFA to facilitate the active maintenance of face stimuli in this

working memory task. Note, that unlike the univariate analysis,

regions within the right IFG bordering the premotor area, and the

right IPS have significant correlations with the right FFA during

the cue, delay, and probe stages of the task, although the FFA’s

correlation with the right IPS during the probe period has decreased

substantially (red arrows). It is worth noting that the region of peak

univariate activation in the right IFG is located slightly anterior to
Fig. 5. Example of beta series correlations across the stages of the delayed

recognition task in a single subject. The beta series from the right FFA seed

(red) is compared with that of a single voxel in the right IFG (blue) during

the cue period (a) and the delay period (b). This particular voxel correlates

more strongly with the FFA seed during the delay period. (For interpretation

of the references to color in this figure legend, the reader is referred to the

web version of this article.)
the region of peak correlation, suggesting that the IFG voxels that

are most activated during the task are not necessarily the ones that

interact strongest with the FFA. These maps serve to illustrate both

similarities and differences between data obtained from these

different methods on the same data set.

Observations of the group correlation data in Fig. 4b reveal an

increase in the correlation between the right FFA and the right IFG

from cue to delay. For illustrative purposes, we extracted the beta

series from a single voxel in the right IFG from one of the subjects

and demonstrate an increase in its correlation with the subject’s

FFA seed across these stages (Fig. 5).

It is important to evaluate if the beta values obtained from

sequential stages of a task are independent from one another to

determine if the correlations at each stage reflect interactions

specific to that stage. In other words, if the beta series of sequential

stages were highly correlated, it might suggest that the beta values

were bcontaminatedQ by residual activity of the preceding stage,

perhaps secondary to the sluggish hemodynamic response. Under

these circumstances, it would be difficult to make the case that the

correlation maps generated for these separate task stages provide

unique information. To address this issue, we extracted the cue,

delay, and probe beta series from each subject’s FFA seed, and then

calculated the correlation of the cue and delay beta series, as well as

the delay and probe beta series for each subject. The average

correlation coefficient was 0.055 for the cue/delay correlation and

0.040 for the delay/probe correlation, indicating that the magnitude

of the beta values within each stage of any given trial did not have

any consistent relationship to the magnitude of the beta values in the

subsequent stage derived from that same trial. Based on this near

independence, we feel confident that the beta series correlation

method is capable of detecting regions correlated with a seed during

distinct stages, and if a region does remain correlated with a seed

across stages, then the correlation is sustained due neurophysio-

logical factors rather than contamination from the preceding stage.
Discussion

In this paper, we have introduced a new method for modeling

functional connectivity in an event-related fMRI design, capable of

characterizing network interactions in the individual subcompo-

nents of a multistage cognitive task. To demonstrate the validity of

the beta series correlation method, we applied it to an event-related

fMRI data set (Sun et al., 2004) in which the subjects performed a

simple motor task and showed that a greater demand for bimanual

coordination resulted in increased correlation between motor areas

of the two hemispheres. We then illustrated how this method could

be used to analyze inter-regional interactions in a more complex

multistage cognitive task, the delayed recognition task.

The validation study successfully demonstrated that the beta

series correlation method is sensitive to changes in functional

connectivity. Our results yielded the pattern expected based on

extant EEG data and replicated those found with coherence

analysis conducted on the same data set (Sun et al., 2004).

Specifically, the Interleaved condition, which required increased

bimanual coordination, induced greater correlation between right

and left hemisphere motor regions.

Despite the fact that coherence analysis and beta series

correlation analysis produced similar results when applied to this

data set, there are a number of important differences between the

methods. Most notably, coherence analysis operates on Fourier



J. Rissman et al. / NeuroImage 23 (2004) 752–763760
transformed estimates of time series data whereas beta series

correlations are based on parameter estimates derived from fitting a

statistical model to the time series data. Because coherence analysis

is a spectral measure most sensitive to low frequency BOLD

fluctuations (b0.15 Hz), relatively long segments of continuous

time series data are required to robustly measure inter-regional

coherence. Thus, as noted in Sun et al. (2004), a block design

consisting of entire runs of one condition or another would be the

most optimal for coherence analysis, since it best preserves the

spectral information contained in the time series data. The

application of coherence analysis to event-related designs is

limited to situations where only a single event occurs on each

trial and a sufficiently long intertrial interval (ITI) is allowed to

elapse between trials to allow the BOLD response to return to

baseline. This is necessary because the time series data from all the

trials of given condition need to be extracted and concatenated into

a condition-specific time series. If segments much shorter than 16 s

were concatenated, artificial frequencies could be introduced into

the time series that could not be adequately removed by the

windowing procedure used by Sun et al. (2004). Thus, coherence

analysis could not be adapted for use on an experimental task in

which several sequential stages of cognitive processing occur, such

as the delayed recognition task, because it would not be possible to

extract sufficient time series data from each of the task stages.

The capability of the beta series correlation method to model

functional connectivity in such a multistage task represents its

primary advantage over existing multivariate methods. However,

we would not necessarily advocate using the beta series correlation

method over coherence analysis for analyzing the data from a

single-stage task with widely spaced trials, such as that of Sun et al.

(2004). When applied to such a data set, the beta series correlation

method computes the best fit of an HRF-derived reference

waveform to the time series data from each trial, distilling 16 s

(32 TRs) of data to a single beta value. Thus, it may unnecessarily

filter out some of the spectral information contained in the time

series data that a method such as coherence analysis could exploit

to derive a more robust estimate of functional connectivity.

However, the fact that the beta series correlation method was able

to closely replicate the results of the coherence analysis despite its

inherent reduction of 2304 time points worth of data into 72 beta

values indicates that the most critical information contained in the

time series data was not discarded.

To demonstrate how the beta series correlation method can be

applied to the type of multistage cognitive task for which it was

intended, we applied the method to analyze functional connectivity

during the individual subcomponents of a fairly standard event-

related visual working memory task. We chose the delayed

recognition task because it provides an excellent example of a

cognitive task that is frequently studied to evaluate component

processes in cognitive psychology, single cell neurophysiology,

and functional neuroimaging. Many theories of working memory

postulate that prefrontal and parietal cortices interact with posterior

visual association areas during the delay period to keep behavior-

ally relevant perceptual representations active when they are no

longer present in the environment (Curtis and D’Esposito, 2003a;

Fuster, 1997; Miller and Cohen, 2001). Evidence suggestive of

such interactions comes from single unit recordings in monkeys

performing working memory tasks (Fuster et al., 1985; Tomita et

al., 1999) as well as human studies demonstrating the effect that

lesions of the prefrontal cortex have on evoked potentials in

posterior brain regions (Chao and Knight, 1998). fMRI technology
could provide a potentially useful tool for further characterizing

these interactions, since it can simultaneously measure activity

levels throughout the entire functioning brain with relatively high

spatial resolution.

While existing multivariate fMRI methods have succeeded in

modeling functional connectivity during single-stage tasks (Buchel

et al., 1999; Cabeza et al., 1997; Maguire et al., 2000; Rowe et al.,

2002; Sun et al., 2004) these methods cannot be validly applied to

multistage tasks. The principal reason for this is that unlike

electrophysiological recordings, fMRI can only measure neural

activity indirectly through the sluggish BOLD response, making it

difficult to determine which aspect of the measured signal is

attributable to each of the sequential stages of the task. For example,

in the delayed recognition task presented in this paper, the subject

encodes a face stimulus for 1 s, maintains the face across a 7-s delay

period and then makes a same/different response to a second face

stimulus. One cannot simply divide the time series data from each

trial into discrete segments, sort by stage, and submit these bstage-
specificQ time series to correlation or coherence analysis. Such an

approach would disregard the fact that the delay period time points

are contaminated by residual cue period activity, and the probe

period time points are contaminated by both residual cue and delay

activity. Even more sophisticated approaches of modeling func-

tional connectivity during the delay period fail to take residual

encoding activity into account (e.g., Pessoa et al., 2002).

The beta series correlation method offers a novel approach to

modeling functional connectivity during the individual stages of

such a task. The method utilizes a general linear model approach

similar to that employed by many univariate studies of the delayed

recognition task (see D’Esposito et al., 2000 for review). By

parameterizing the activity level during each of the individual task

stages with a set of time-shifted hemodyamically derived

covariates that compete for variance, estimates can be made of

the activity specific to each stage that take into account the

influence of adjacent stages. The beta series correlation method

departs from traditional univariate methods by modeling stage-

specific activity separately for every trial in the experiment. The

variability inherent in the resulting stage-specific beta values is

used to our advantage, with the premise that regions whose beta

values fluctuate with the same variability for a given stage are

functionally interacting during that stage.

Functional connectivity in the delayed recognition data set was

explored by calculating the correlation between the fusiform face

area (FFA) seed’s beta series and that of every other voxel in the

brain. Given the importance of the FFA in face processing, we

focused our analysis on characterizing the network of cortical

regions that interact with the FFA during the cue, delay, and probe

stages of the task. While the network of regions exhibiting

significant correlations with the FFA seed had considerable overlap

with those regions exhibiting significant univariate activations,

interesting differences between the correlation data and the

univariate data emerged (Fig. 4). Whereas the univariate data

revealed bilateral activations in the posterior IFG only during the

cue and probe stages of the task and not during delay, the

correlation analysis revealed a right-sided region in the posterior

IFG that remained correlated with the right FFA seed throughout

all three stages of the task. Univariate activity in the right IPS was

also only seen during the cue and probe stages of the task. Like the

right IFG, this region was correlated with the right FFA seed during

both cue and delay, but unlike the univariate data, its correlation

with the seed diminished during the probe stage. The presence of
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significant delay period correlations between the FFA and regions

of the prefrontal and parietal cortex supports models of working

memory that suggest that higher order association cortices interact

with posterior sensory regions to facilitate the active maintenance

of a sensory percept across the delay period. The correlation

between the FFA and these high-order regions appears be initially

established during the encoding of the cue stimulus, and these

correlations are largely sustained during the delay period, despite a

dramatic decrease in the level of univariate activity.

While a detailed description of all the similarities and differ-

ences between the univariate and correlation results is beyond the

scope of this report, some comments on the relationship between

activations and interactions are warranted. Our results showed that

the IFG was activated bilaterally during the cue and probe stages of

the task, but only the right IFG was correlated with the right FFA

seed. One might speculate that the right IFG exhibits high BOLD

activity during the cue and probe stages because neurons in this

region are actively firing to facilitate communication with the right

FFA, as is suggested by the correlation data. The strongly

ipsilateral nature of the correlation between this ventral temporal

visual association area and the prefrontal cortex fits in with our

knowledge of the anatomical connections between these regions

(Petrides and Pandya, 2002; Webster et al., 1994). However, the

left IFG also showed high BOLD activity during these stages,

which raises the question as to what function these left IFG

neurons subserve. A reasonable speculation is that this region is

interacting with brain regions other than the right FFA, perhaps the

left fusiform gyrus, or alternatively its activation reflects the

implementation of a verbal strategy involved in the encoding and

recognition of the face stimuli. One way to determine what brain

regions are interacting with the left IFG is to define it as a seed and

run a new beta series correlation analysis to identify the brain

regions that are highly correlated with it. By performing correlation

analyses with several different seeds, a more detailed profile of the

multiple functional networks subserving the individual processing

stages of a cognitive task can be revealed.

Our results also revealed regions that did not show high BOLD

activity in the univariate analysis, and yet appeared to be strongly

correlated with the seed. For example, the right IFG did not show

any suprathreshold activation during the delay period when

assessed with univariate analysis, but its correlation with the right

FFA seed remained robust during the delay period. We have ruled

out the possibility that this sustained correlation across stages is

due to an artifact of the method; that is, the delay period beta

values were simply mirroring the cue period beta values. We

demonstrated that the FFA seed’s cue period beta series is

uncorrelated with its delay period beta series, and the same is true

between delay and probe. Thus, correlation maps produced for

individual task stages provide unique information about stage-

specific functional interactions. What then might it mean for a

region to be correlated with the seed while failing to show

significant univariate activity? One possibility is that a region that

does not exhibit BOLD signal above a specified significance

threshold may still contain a population of neurons within those

voxels that are communicating with the seed region. While the

firing of these neurons might not be enough to drive the BOLD

signal above threshold, it may be enough to synchronize the trial-

to-trial fluctuations in the BOLD signal between two regions that

are communicating. The ability of the beta series correlation

method to detect high correlations in the presence of low univariate

activity suggests that there is much more information contained in
fMRI data than is typically revealed by univariate methods that

simply record isolated activity levels exceeding a set threshold.

Although we have focused our attention on the application of

the beta series correlation method to the delayed recognition task,

the method is not restricted to this particular task design. This

method could theoretically be applied to the analysis of functional

connectivity during any task in which a series of processing stages

occur in succession. It is important that the tasks are designed such

that the stages can be adequately modeled by covariates with

onsets spaced approximately 4 s apart to minimize collinearity

(Zarahn et al., 1997). The design should also include a sufficiently

long ITI at the end of every trial to ensure that the BOLD response

is allowed to return to baseline levels. Thus, the beta series

correlation method cannot be applied to rapid event-related

designs. In such designs, the hemodynamic responses of adjacent

trials are allowed to overlap in time, and by jittering the degree of

this overlap across many trials, the activity evoked by each task

condition can be uniquely estimated. However, since the beta series

correlation method involves modeling each trial separately, there is

no way to systematically account for this hemodynamic overlap

when deriving condition-specific single-trial activity estimates.

Commonly used experimental paradigms that would be good

candidates for beta series correlation analysis include the oculo-

motor delayed response task (e.g., Curtis and D’Esposito, 2003b),

cued response preparation (e.g., Pochon et al., 2001) or antici-

pation tasks (e.g., Sakai and Passingham, 2003), and tasks

involving shifting or sustaining attention.

The example applications of the beta series correlation method

provided in this paper have taken a seed-based approach to

characterizing functional connectivity. Such an approach is most

useful when a particular brain region is known to be involved in a

cognitive process and the researcher wishes to determine what

other brain areas are interacting with this bseedQ region. However,
the use of the beta series correlation method is not limited to the

generation of exploratory whole-brain seed correlation maps. Once

the researcher has characterized the key set of brain regions, or

bnodesQ, involved in a cognitive task, a more explicit model of the

inter-regional connections can be constructed. This model can be

used to assess how the beffective connectivityQ between nodes in

the network changes across the stages of the cognitive task.

Effective connectivity is defined as the influence one neural

element has on another (Friston et al., 1993). The strength of the

connections between regions is determined by analyzing the

observed covariance structure in the context of an anatomically

constrained model. Existing approaches to modeling effective

connectivity have computed inter-regional covariances across

subjects, as is necessary with positron emission tomography

(PET) data (Cabeza et al., 1997; McIntosh et al., 1996, 1994), or

from within-subject correlations in the fMRI time series data,

which can only be done for blocked design experiments (Buchel

and Friston, 1997; Buchel et al., 1999; Friston and Buchel, 2000;

Goncalves et al., 2001; Maguire et al., 2000; Rowe et al., 2002;

Toni et al., 2002). However, the beta series correlation method can

easily be used to calculate the correlations between nodes in event-

related fMRI experiments (an example of the correlation between

two nodes can be seen in Fig. 3), and these correlations can then be

entered into an explicit structural model to characterize the patterns

of effective connectivity across the individual stages of a multi-

stage cognitive task.

The beta series correlation method presented in this paper

should provide a useful tool for researchers interested in exploring
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network interactions in multistage cognitive tasks using event-

related fMRI designs. Such designs cannot effectively be analyzed

with currently available methods for modeling functional con-

nectivity in a way that would allow inter-regional interactions to be

assessed independently for the individual stages of the task. We

expect that this method will aid in the generation of novel

perspectives on brain function that are not offered with standard

univariate analyses.
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