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Abstract

■ Extant neuroimaging data implicate frontoparietal and medial-
temporal lobe regions in episodic retrieval, and the specific pat-
tern of activity within and across these regions is diagnostic of an
individual’s subjective mnemonic experience. For example, in
laboratory-based paradigms, memories for recently encoded
faces can be accurately decoded from single-trial fMRI patterns
[Uncapher, M. R., Boyd-Meredith, J. T., Chow, T. E., Rissman, J.,
& Wagner, A. D. Goal-directed modulation of neural memory pat-
terns: Implications for fMRI-based memory detection. Journal of
Neuroscience, 35, 8531–8545, 2015; Rissman, J., Greely, H. T., &
Wagner, A. D. Detecting individual memories through the neural
decoding of memory states and past experience. Proceedings of
the National Academy of Sciences, U.S.A., 107, 9849–9854, 2010].
Here, we investigated the neural patterns underlying memory for
real-world autobiographical events, probed at 1- to 3-week reten-
tion intervals as well as whether distinct patterns are associated
with different subjective memory states. For 3 weeks, participants
(n= 16) wore digital cameras that captured photographs of their

daily activities. One week later, they were scanned while making
memory judgments about sequences of photos depicting events
from their own lives or events captured by the cameras of others.
Whole-brain multivoxel pattern analysis achieved near-perfect
accuracy at distinguishing correctly recognized events from cor-
rectly rejected novel events, and decoding performance did not
significantly vary with retention interval. Multivoxel pattern classi-
fiers also differentiated recollection from familiarity and reliably
decoded the subjective strength of recollection, of familiarity, or
of novelty. Classification-based brain maps revealed dissociable
neural signatures of these mnemonic states, with activity patterns
in hippocampus, medial PFC, and ventral parietal cortex being
particularly diagnostic of recollection. Finally, a classifier trained
on previously acquired laboratory-based memory data achieved
reliable decoding of autobiographical memory states. We discuss
the implications for neuroscientific accounts of episodic retrieval
and comment on the potential forensic use of fMRI for probing
experiential knowledge. ■

INTRODUCTION

Throughout day-to-day life, we constantly evaluate how
elements of the present environment relate to our past
experiences, as information retrieved from memory can
guide selection of appropriate behaviors. An accumulat-
ing body of neuroimaging work has yielded insights into
the functional contributions of frontoparietal and medial-
temporal lobe structures to episodic retrieval (Kim, 2013;
Hutchinson, Uncapher, & Wagner, 2009; Spaniol et al.,
2009), and the particular profile of activation within and
across these regions is closely linked to the subjective
feeling of familiarity for a given retrieval cue and/or the
recollection of associated contextual details (Rugg &
Vilberg, 2013; Shimamura, 2011; Eichenbaum, Yonelinas,
& Ranganath, 2007; Wagner, Shannon, Kahn, & Buckner,
2005; Squire, Stark, & Clark, 2004). Over the past de-
cade, aided by the development and application of sophis-
ticated multivoxel pattern analysis (MVPA) techniques
(Tong & Pratte, 2012; Norman, Polyn, Detre, & Haxby,
2006), researchers have demonstrated that the distributed
fMRI patterns associated with the act of memory retrieval

are sufficiently robust so as to be detectable on individual
trials (Rissman & Wagner, 2012). For instance, a number of
MVPA studies have showcased an ability to “read out” basic
characteristics of retrieved mnemonic content, such as
which of several contexts an item had been studied in or
which of several candidate memories is currently being
brought back to mind (e.g., Thakral, Wang, & Rugg, 2015;
Kuhl & Chun, 2014; Leiker & Johnson, 2014; Chadwick,
Hassabis, Weiskopf, & Maguire, 2010; Johnson, McDuff,
Rugg, & Norman, 2009; Polyn, Natu, Cohen, & Norman,
2005). By indexing the reemergence of stimulus-specific
activity patterns during associative retrieval, researchers
have made progress in understanding the relationship be-
tween hippocampal signaling and neocortical reactivation
(Leiker & Johnson, 2015; St-Laurent, Abdi, & Buchsbaum,
2015; Wing, Ritchey, & Cabeza, 2015; Bosch, Jehee,
Fernandez, & Doeller, 2014; Gordon, Rissman, Kiani, &
Wagner, 2014; Ritchey, Wing, LaBar, & Cabeza, 2013;
Staresina, Henson, Kriegeskorte, & Alink, 2012) as well as
characterizing the consequences of mnemonic competition
and its resolution (Wimber, Alink, Charest, Kriegeskorte, &
Anderson, 2015; Kuhl, Rissman, Chun, & Wagner, 2011).
Other investigations have focused on decoding the cogni-
tive processes engaged during retrieval, such as whether1University of California, Los Angeles, 2Stanford University
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one’s efforts are preferentially oriented toward recollecting
source details or gauging the familiarity of probe items
(Quamme, Weiss, & Norman, 2010), as well decoding the
subjective outcome of retrieval, including one’s confidence
in a given memory judgment (Rissman, Greely, & Wagner,
2010) and the impact of one’s retrieval goals on the neural
signatures of recognition and novelty (Uncapher, Boyd-
Meredith, Chow, Rissman, & Wagner, 2015).
Collectively, these studies have leveraged MVPA

methods to generate valuable insights into the neural
mechanisms of episodic retrieval. However, this body
of work has almost entirely focused on memories for in-
formation studied in a laboratory setting—typically simple
word or picture stimuli, but occasionally more complex
stimuli such as brief video clips (e.g., St-Laurent et al.,
2015; Buchsbaum, Lemire-Rodger, Fang, & Abdi, 2012;
Chadwick, Hassabis, & Maguire, 2011; Chadwick et al.,
2010). The emphasis on laboratory-encoded stimuli is sen-
sible, given the high degree of experimental control that
researchers can exert over the learning experience. That
said, the constrained stimulus sets and encoding condi-
tions employed by such studies may fail to adequately
approximate the richness of the episodic memories
formed in more naturalistic contexts as individuals freely
navigate the world and engage in personally meaningful
activities (Maguire, 2012; Cohen & Conway, 2008). Indeed,
efforts to compare brain activation during the retrieval of
laboratory-encoded and real-world event memories have
noted some pronounced differences (McDermott, Szpunar,
& Christ, 2009; Cabeza et al., 2004), including increased
engagement of the hippocampus and ventromedial PFC
(vmPFC) during autobiographical retrieval. This may
stem from the greater degree to which spatiotemporal
and self-referential contextual details are mentally re-
constructed during the recall of real-world episodes
(Rubin & Umanath, 2015; Conway, 2009; Cabeza &
St Jacques, 2007; Hassabis & Maguire, 2007). To achieve
a deeper understanding of human memory as it is actu-
ally used in day-to-day life, it may be necessary to relin-
quish some degree of experimental control in favor of
task paradigms that offer enhanced ecological validity
(e.g., St Jacques, Olm, & Schacter, 2013; Milton, Muhlert,
Butler, Benattayallah, & Zeman, 2011; St Jacques, Conway,
Lowder, & Cabeza, 2011).
To our knowledge, only three fMRI studies to date

have applied MVPA techniques to characterize neural
representations associated with the remembrance of
naturalistically encoded autobiographical events. Two of
these studies (which were based on a common fMRI
data set) utilized verbal prompts to cue the reliving of a
small set of recently experienced (∼2 weeks old) and re-
mote (∼10 years old) event memories (Bonnici, Chadwick,
& Maguire, 2013; Bonnici et al., 2012). Although the
authors did not attempt to directly decode the age (i.e.,
temporal remoteness) of each memory, they did find that
regions such as the vmPFC and posterior hippocampus
showed heightened representational distinctiveness in

the neural patterns associated with more remote memo-
ries, which presumably rely more heavily on reconstructive
processes during retrieval. A recent study by Nielson,
Smith, Sreekumar, Dennis, and Sederberg (2015) exam-
ined the neural representation of spatial and temporal
information in the hippocampus during the retrieval of
real-world memories. In the scanner, participants viewed
photographs captured by a GPS-enabled camera that they
had worn over a 1-month period, and they attempted to
vividly recall the depicted events. Activity patterns within
the left anterior hippocampus were found to be sensitive
to both spatial position (i.e., showing greater similarity
across events encoded in nearby locations, relative to dis-
tant locations) and temporal distance (i.e., showing greater
similarity across events encoded days apart, relative to
weeks apart) revealing superimposed coding of these
two critical mnemonic dimensions. Studies like these high-
light the potential of MVPA methods to quantify the rep-
resentational distinctiveness of individual memories in
different regions of the brain. However, a number of open
questions remain, including evaluation of the mnemonic
contributions of other brain regions and the relationship
between brain activity patterns and participants’ subjective
retrieval experiences.

In the present fMRI experiment, we sought to charac-
terize the distributed brain activity patterns associated
with the retrieval of real-world event memories. To gather
a rich set of naturalistic stimuli, we deployed wearable
digital camera devices to record the daily life events of
research participants over the course of 3 weeks. Partici-
pants were then scanned 1 week later as we probed their
memories by presenting them with brief sequences of
photos depicting experiences from their own lives as well
as some from the lives of other participants. Rather than
focusing our fMRI analysis efforts on decoding the iden-
tity or representational content of individual memories,
we instead chose to focus on decoding brain processes
tied to participants’ subjectively reported retrieval expe-
riences. In doing so, we aimed to build on prior work
demonstrating that the mnemonic outcome associated
with a given retrieval attempt (i.e., whether a test probe
is reported to be vividly remembered, perceived as famil-
iar, or perceived as novel) can be reliably classified based
on whole-brain fMRI activity patterns (Rissman et al.,
2010). It is possible that the highly accurate decoding re-
sults of that study (with accuracies ranging from 70% to
90% depending on the mnemonic distinction in ques-
tion) were inflated by the fact that all of the memories
were of the same type (faces) and encoded very shortly
(∼1 hr) before scanning. If this were the case, then mem-
ories for a more heterogeneous set of real-world experi-
ences probed at a wide range of retention intervals might
have more variable neural signatures at the time of retrieval
and be less amenable to classification. Indeed, prior fMRI
studies have documented changes in the strength and
anatomical distribution of activity levels over retention
intervals of 1 month (Smith et al., 2010; Takashima et al.,
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2006; Bosshardt et al., 2005). On the other hand, it is
possible that memories for real-world experiences, by
virtue of their heightened strength, enriched contextual
associations, and personal relevance, might yield equal, if
not better, classification performance than was obtained
in the face memory study.

Although comparing classification accuracies across
studies can provide some information about the relative
ability to decode laboratory-based and real-world memo-
ries, a stronger test would be to evaluate whether a clas-
sifier trained to differentiate memory retrieval states
based on fMRI data from our prior face memory study
(Rissman et al., 2010) would be able to generalize its pre-
dictive power to brain patterns measured from an inde-
pendent group of participants in the present study of
real-world memory retrieval. There is reason to believe that
classifier generalization across these types of memory tasks
might be challenging to achieve. In addition to the afore-
mentioned issue of heterogeneity, a recent meta-analysis
comparing results of fMRI studies involving the retrieval
of autobiographical memories with those involving the
retrieval of laboratory-encoded memories reported sur-
prisingly little neuroanatomical overlap (McDermott
et al., 2009). Adding to the intrigue, recent reports of indi-
viduals with “highly superior autobiographical memory”
(Patihis et al., 2013; LePort et al., 2012), as well as those
with “highly deficient autobiographicalmemory” (Palombo,
Alain, Soderlund, Khuu, & Levine, 2015), have provided
striking demonstrations that autobiographical retrieval
abilities are largely uncorrelated with one’s ability to per-
form standard laboratory-based memory tasks. Dis-
sociations like these have led some to propose that
retrieving autobiographical event knowledge is funda-
mentally different from other forms of episodic retrieval
(Roediger & McDermott, 2013). Accordingly, should our
classifier model show reasonable generalization per-
formance across these two seemingly different memory
tasks, it would highlight that important commonalities
nevertheless exist.

Beyond our assessment of classification accuracy
levels, which provide a useful assay of how well distinct
mnemonic retrieval experiences can be predicted based
on the underlying activity patterns, we also aim to evalu-
ate which brain regions provide maximally diagnostic sig-
nals to each classifier model (i.e., importance maps). Of
particular interest are the brain patterns tied to more sub-
tle gradations in memory retrieval outcomes, such as the
degree of recollection or the degree of familiarity report-
ed by participants. To the extent that our binary classifier
models are prone to settle on a unidimensional represen-
tation of memory strength, a classifier trained to differen-
tiate strongly recollected events versus moderately
recollected events might anchor on the very same neural
signatures as a classifier trained to differentiate strongly
familiar versus moderately familiar events. However,
should the importance maps for these two classifications
diverge, this would indicate that different brain regions

are driving the classifier’s predictions in each case and
support a qualitative neurocognitive distinction between
these memory states.
A final motivation for our study was to contribute to an

emerging dialogue between neuroscientists, legal
scholars, and the public regarding the potential use of
fMRI as a memory detection technology (Schacter &
Loftus, 2013; Shen & Jones, 2011; Bles & Haynes, 2008;
Meegan, 2008). Previous fMRI studies have documented
the high accuracy with which single-trial brain activity
patterns can reveal whether a probe stimulus evokes a
sense of recognition or novelty (Uncapher et al., 2015;
Rissman et al., 2010). At the same time, these studies
have noted serious limitations, including difficulty differ-
entiating true versus false memories and the susceptibil-
ity to countermeasures (i.e., strategic efforts to conceal
one’s memories). Despite these important boundary
conditions that diminish the forensic value of fMRI as
an objective tool for memory detection, fMRI measures
could still hold potential as a means to quantify the
strength of a memory, to supplement verbal reports of
recognition, or perhaps even to assess the memories of
individuals who are unable to communicate. By expanding
the scope of earlier fMRI memory detection efforts, which
used laboratory-encoded face stimuli (Uncapher et al.,
2015; Rissman et al., 2010), our study has the potential
to yield valuable data regarding the brain-based classifica-
tion of real-world event memories.

METHODS
Participants

Sixteen participants (eight women; aged 18–22 years)
took part in this experiment. Written informed consent
was obtained in accordance with procedures approved
by the institutional review board at Stanford University.
All participants were right-handed native speakers of En-
glish, had normal or corrected-to-normal vision, and were
prescreened for the presence of medical, neurological, or
psychiatric illnesses and use of psychoactive medications.
To provide some control over the nature of the daily life
events experienced by our participants, enrollment was
restricted to Stanford University undergraduate students
who were residing on campus. Participants were remuner-
ated with $300 for their efforts over the course of their
month-long enrollment period. One additional individual
was enrolled in the study, but because of a camera mal-
function, his photographs were too blurry for use in the
experiment; his participation was discontinued before
MRI scanning.

Procedure

Use of Wearable Cameras

Each participant was provided a Vicon Revue digital cam-
era (Vicon Motion Systems Ltd., Oxford, UK) for a 3-week

606 Journal of Cognitive Neuroscience Volume 28, Number 4



period. These small 0.3-megapixel necklace-mounted
cameras contain sensors that detect changes in environ-
mental factors, such as ambient light intensity, color,
temperature, and movement. Wide-angle color photo-
graphs (640 × 480 pixels) are automatically taken when-
ever the sensors are triggered, with approximately 2–10
photos captured per minute. Importantly, the cameras
lack LCD display screens, so participants had no means
to review the photos being captured by their camera. Par-
ticipants were encouraged to wear the camera in the “on”
mode as much as possible each day, with the option of
turning it off whenever they, or the people around them,
desired privacy. Each week, participants returned to the
laboratory to allow the experimenter to download the
photos (approximately 5000–15,000 per week depending
on participants’ wearing habits). Cameras were returned
after 21 days of wearing, and an fMRI scanning session
took place 6–9 days later (mean lag = 7.4 days). Before
the fMRI session, participants had no knowledge of the
specific goals of the experiment, although they were in-
formed from the outset that the fMRI study would utilize
images from their cameras as stimuli.

Selection of Photographic Stimuli

From the thousands of photos captured by each partici-
pant’s camera, we selected a set of 180 “event sequences”
(60 from each week of camera wearing) to use as stimuli
in the fMRI experiment. Each event sequence was com-
posed of four photos captured within a 5-min interval
that depicted the temporal unfolding of a potentially
memorable episode from the participant’s day. The
image content of the selected event sequences varied
widely, with some events depicting the wearer in a sta-
tionary position (e.g., sitting in class, attending a concert
or sporting event, eating at a restaurant), some events
depicting the wearer on the move (e.g., entering or exit-
ing a building, moving through a room, walking across
campus, hiking on a trail, shopping at a store), and some
events depicting a combination of these attributes. Many
of the event sequences contained visible faces, whether
of friends, acquaintances, or strangers, whereas other
events contained primarily environmental features. Given
the experimental requirement to create 60 event se-
quences per week for each participant, we occasionally
had to break longer duration events (e.g., a picnic or
party) into two or more qualitatively distinct subevents.
Although it also was impossible to avoid the inclusion
of multiple similar events (e.g., dining in the same cafe-
teria, studying in the same library, hanging out in the
same place with the same group of friends), a concerted
effort was made to select photos that had enough unique
details to allow the episodes to be differentiated from one
another. Given the variability of the life events captured
by the cameras, we did not attempt to equate the selected
event sequences for salience or other content-related
attributes. Rather, we embrace this variance as an in-

herent feature of the stimulus set, serving to elicit a wide
range of memory retrieval experiences from the partici-
pants and, as such, to bolster the ecological validity of
the experiment. Although most of the selected photos
were unedited, some were cropped to remove any depic-
tion of the wearer’s own body, because such details might
have provided participants with an easy cue to identify the
images as being from their own camera. In addition, some
photos were mildly edited to correct issues with colora-
tion and exposure. By design, none of the participants
were friends with each other, and we never encountered
an instance where two concurrently enrolled participants
came into direct contact with one another while wearing
their cameras.

fMRI Task Design

The fMRI experiment included 300 trials distributed
across 10 scanning runs (30 trials/run). On each trial, par-
ticipants were presented with a four-photo event se-
quence and asked to make a response indicating their
memory for that event. Within each run, 18 of the trials
featured event sequences that had been captured by the
participant’s own camera (“Own Life” condition), with six
of these event sequences drawn from each of the 3 weeks
of camera wearing. The remaining 12 trials of each run
featured event sequences that had been captured by
other participants’ cameras (“Other’s Life” condition);
for any given participant, these were drawn evenly from
event sequences that had been created for three other
randomly selected participants.1 The presentation order
of Own Life and Other’s Life trials was randomized. Across
the 10 runs, participants encountered 180 Own Life trials
and 120 Other’s Life trials.

The structure of each trial (Figure 1) was as follows:
The four constituent photos of an event sequence were
sequentially presented for 850 msec each, with a 200-msec
central fixation cross appearing between successive
photos. After the offset of the fourth photo, a question
mark appeared on the screen for 4 sec, turning from
white to red during the final second to inform partici-
pants of the impending deadline for them to make a re-
sponse. The response period required participants to
depress one of eight buttons indicating their level of
memory for the event sequence. To mitigate continued
reminiscence or mind-wandering during the intertrial
interval, participants performed an active baseline task
(Stark & Squire, 2001). Specifically, after a 1-sec fixation
cross, a series of five arrows appeared on the screen for
1 sec each, with 400 msec elapsing between successive
arrows. Participants indicated the left/right direction of
each arrow using their left and right index fingers, re-
spectively. A red central fixation cross (1 sec) then sig-
naled the impending onset of the next trial. The total trial
onset asynchrony was held constant at 16 sec. The timing
of stimulus presentation and response collection was
controlled using the Psychophysics Toolbox (Brainard,
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1997) in MATLAB (The MathWorks, Natick, MA). Visual
stimuli were projected onto a screen against an isolumi-
nant gray background and viewed through a mirror.

Immediately before the scanning session, participants
were provided with written instructions regarding the up-
coming memory test, with emphasis on the critical dis-
tinctions between the eight different memory response
options:

• Strongly recollected: You are able to recollect many
details of this specific experience.

• Moderately recollected: You are able to recollect a few
of the details surrounding this specific experience.

• Strongly familiar: This specific experience seems
strongly familiar to you.

• Moderately familiar: This specific experience seems
moderately familiar to you.

• Know but not familiar: You know that this was your ex-
perience, and yet the specific experience depicted in
the photos does not seem particularly familiar to you.

• Unsure: You are unsure whether this was your
experience.

• Probably not yours: You probably did not have this
experience.

• Sure not yours: You are sure that you did not have this
experience.

Additional instructions helped clarify the conceptual dif-
ferences between recollection, familiarity, and knowing,
using specific examples to illustrate these qualitatively
different memory states. The experimenter then verbally
confirmed the participant’s understanding of the instruc-
tions and administered a practice version of the experi-
ment. The practice version, conducted on a laptop
computer, consisted of 12 trials (six Own Life event se-
quences drawn from surplus materials and six Other’s
Life event sequences), and participants made their re-

sponses on a keyboard with eight labeled keys. In the
scanner, responses were made on two MR-compatible
button boxes, one held in each hand; thumbs were not
used. Before beginning the memory test, participants
performed a button mapping training task to ensure mas-
tery of the mappings. Halfway through the experiment
(after completion of the first five scanning runs), the or-
der of the button mappings was reversed, and partici-
pants received training on the new mappings before
continuing. The goal of this manipulation was to enable
training of MVPA classifiers on the neural signatures asso-
ciated with unique memory states, independent of the
specific motor response mappings. The order in which
the two button mappings were administered was coun-
terbalanced across participants.

fMRI Data Acquisition

Whole-brain imaging was conducted on a 3.0-T Signa MRI
system (GE Healthcare Systems, Milwaukee, WI). Func-
tional images were collected using a T2*-weighted 2-D
gradient-echo spiral-in/out pulse sequence (repetition
time [TR] = 2.0 sec, echo time = 30 msec, flip angle = 75°,
field of view=21 cm, in-plane resolution=3.44mm2). Each
functional volume consisted of 30 contiguous 3.8-mm
thick slices acquired parallel to the AC–PC plane. Func-
tional data were collected across 10 runs of 248 volumes
each. The six initial volumes from each run were dis-
carded to allow for T1 equilibration. To aid with spatial
registration, anatomical images coplanar with the func-
tional data were collected at the start of the experiment
using a T2-weighted flow-compensated spin-echo se-
quence, and T1-weighted whole-brain spoiled gradient re-
called (SPGR) 3-D anatomical image (voxel size = 0.86 ×
0.86 × 1.0 mm) was acquired after the fifth functional run
(during the second button mapping training session).

Figure 1. Experimental design. (A) On each trial, participants viewed a sequence of four photographs depicting the temporal unfolding of an event.
Immediately thereafter, participants made a button-press response indicating their memory for that event. The eight response options were mapped
to eight distinct buttons (C), the order of which was reversed midway through the scanning session. During the 8-sec intertrial interval (ITI),
participants were tasked with judging the right/ left direction of a series of five arrows. Participants performed 300 trials, the breakdown of which
is illustrated in B.
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fMRI Data Preprocessing

Physiological noise correction was applied during recon-
struction of the functional images using respiratory data
measured from a pneumatic belt strapped around the up-
per abdomen during scanning. This consisted of removal
of time-locked respiratory artifacts using RETROICOR
(Glover, Li, & Ress, 2000) and removal of low-frequency
respiratory effects using RVHRCOR (Chang & Glover,
2009). The reconstructed images were then preprocessed
using SPM5 (www.fil.ion.ucl.ac.uk/spm). Functional im-
ages were corrected for differences in slice acquisition
timing, followed by motion correction using a two-pass
six-parameter rigid-body realignment procedure. The T2-
weighted coplanar anatomical image was then coregis-
tered to the mean functional image, and the T1-weighted
whole-brain SPGR image was in turn coregistered to the
T2-weighted image. The SPGR image was then segmented
by tissue type, and the gray matter image was warped to a
gray matter template image in Montreal Neurological Insti-
tute space. The resulting nonlinear transformation param-
eters were applied to all functional images, which then
were resampled into 3-mm isotropic voxels and smoothed
with an 8-mm FWHM kernel.

MVPA Analysis

Pattern classification analyses were implemented in
MATLAB using the Princeton MVPA Toolbox (code.google.
com/p/princeton-mvpa-toolbox) and custom code. Within
each run, each voxel’s time series was detrended to re-
move linear and quadratic trends, high-pass filtered to re-
move frequencies below 0.01 Hz, and z scored. To reduce
the 2480-volume fMRI time series to a single brain activity
measure for each of the 300 trials, the four TRs acquired
6–14 sec after the onset of each trial (i.e., TRs = 4–7),
corresponding to the peak window of task-related acti-
vation, were extracted and averaged. Trials for which the
global activity level deviated by more than ±3 SD from
the mean were deemed to be outliers and discarded
before analysis. A common 55,761-voxel inclusive mask
was applied to the spatially normalized data of all partici-
pants to exclude the cerebellum and motor, premotor,
and somatosensory cortices. This masking, coupled with
the reversal of the button mappings halfway through the
scanning session, prevented the classifier from exploiting
brain activity differences related to the motor responses
associated with distinct mnemonic states.
In each classification analysis, we assessed how accu-

rately the classifier could discriminate between trials from
two or more distinct mnemonic conditions. Owing to the
relatively low number of incorrectly performed trials (i.e.,
Misses and False Alarms), only correct trials (i.e., Hits and
Correct Rejections [CRs]) were included in the analyses.
Except where otherwise indicated, separate classifier
models were trained and tested on each participant’s data
using a 10-fold cross-validation procedure. Trials were

randomly divided into 10 balanced subsets, with each sub-
set containing an equal number of trials from each class.
Trials from nine of these subsets were used for classifier
training, and the held-out trials were used as a test set for
assessing generalization performance. This process was it-
eratively repeated with each of the 10 subsets of held-out
trials. Balancing the number of trials from each class pre-
vented the classifier from developing a bias to identify tri-
als as belonging to the more plentiful class and ensured a
theoretical null hypothesis classification accuracy rate of
50% and area under the curve (AUC) of 0.5. An additional
set of analyses with shuffled class labels confirmed that
chance classification performance converged around
these values. For any given classification, participants with
fewer than 15 trials per class were excluded, because hav-
ing an insufficient number of training examples can result
in unstable classifier performance (Pereira, Mitchell, &
Botvinick, 2009). To further ensure the stability of our re-
sults, all classification analyses were repeated 20 times,
each using a different randomly sampled subset of trials,
and the results were then averaged.

In addition to the standard within-participant classifica-
tion analyses, several across-participant classification analy-
ses were conducted. In one such analysis, we trained the
classifier on the pooled data from all but one participant
and tested its ability to predict the condition labels of brain
patterns measured in the held-out participant. This leave-
one-participant-out cross-validation scheme was iterated
until each participant’s data served as the test set. In another
analysis, we trained a classifier on the combined data from
all 16 participants in this study and tested it on data from
16 unique participants who performed a face recognition
memory experiment in a different 3-T scanner (methods
and results from that experiment were previously reported
in Rissman et al., 2010). We also ran an analysis with the
reverse training/testing designation (i.e., training the classi-
fier on data from the face memory experiment and testing
it on data from the present experiment). Note that, in all of
these across-participant analyses, the classifier was always
trained and tested on brain patterns from individual trials.

All classifications utilized a regularized logistic regres-
sion (RLR) algorithm, which we have found to perform
well in similar experimental paradigms (Uncapher et al.,
2015; Rissman et al., 2010). This algorithm implemented
a multiclass logistic regression function using a softmax
transformation of linear combinations of features (i.e., vox-
els) with an additional ridge penalty term as a Gaussian
prior on the feature weights. This penalty term provided
L2 regularization, enforcing small weights. During classi-
fier training, the RLR algorithm learned the set of weights
(β values) that maximized the log likelihood of the data;
weights were initialized to zero, and optimization was
implemented with conjugate gradient minimization using
the gradient of the log likelihood combined with the L2
penalty. The L2 penalty was set to be half of the additive
inverse of a user-specified parameter, multiplied by the
square of the L2 norm of the weight vector for each class,
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added over classes. We elected to set this parameter to a
fixed value of 100 for all within-participant classification
analyses and 10,000 for all across-participant classification
analyses. Other than the use of a large anatomical mask
(described above), no additional feature selection was per-
formed. As with our prior work (Rissman et al., 2010), here
too, we found that restricting the classifier to a subset of
voxels based on their within-training set univariate effects
did not typically improve classification accuracy. This out-
come likely reflects the ability of the classifier to effectively
reduce the weighting of features (i.e., voxels) that provide
little relevant information to the classifier (cf. Chu et al.,
2012).

For all binary (i.e., two-class) analyses, classification per-
formance was summarized by an AUC metric. After fitting
the RLR model parameters using the training set data, each
brain activity pattern from the test set was fed into the
model and yielded an estimate of the probability of that
trial being from Class A or Class B (by construction, these
two values always sum to 1). These probability values
were concatenated across all cross-validation testing folds
and then ranked. The classifier’s true positive [P(Class A) |
Class A] rate and false positive [P(Class A) | Class B] rate
were calculated across all possible decision boundaries
yielding a receiver operating characteristic curve. The area
under this curve can be formally interpreted as the proba-
bility that a randomly chosen member of one class has a
smaller estimated probability of belonging to the other
class than has a randomly chosen member of the other
class. That is, the AUC indexes the mean accuracy with
which a randomly chosen pair of Class A and Class B trials
could be assigned to their correct class.

For multiclass analyses (i.e., those conducted on more
than twoclassesof trials), theclassifier computed anexhaus-
tive set of binary Class N versus Class ∼N analyses and re-
turned the probability of each trial being a member of
each class. The class with the maximal probability estimate
was designated as the classifier’s guess, and the accuracy of
these guesses was aggregated across trials to form a single
accuracy value for each participant. Multiclass decoding
performance was further summarized by confusion matri-
ces, which illustrate the complete probabilistic relationship
between the classifier’s guesses and the true class labels.

To visualize the anatomical distribution of informative
voxels, classification importance maps were derived
based on the logistic regression β weights yielded during
each classifier training cycle; these β weights were aver-
aged across each of the 10 cross-validation iterations and
then across each of the 20 rounds of trial-count-balanced
classifications. By convention, a positive weight value in-
dicates that a voxel’s activity magnitude on each trial was
positively correlated with the probability of that trial be-
ing from Class A, whereas a negative weight value indi-
cates the opposite relationship (i.e., increased activity
leading to a prediction of Class B). These β weights were
then multiplied by each voxel’s mean activity level for
Class A trials (which, owing to our trial balancing and z

scoring procedure, is always the additive inverse of its
mean activity level for Class B trials) and rescaled by a
constant factor of 10,000 (to aid in later visualization).
Voxels with positive values for both activity and weight
were given positively signed importance values, voxels
with negative activity and weight were given negatively
signed importance values, and voxels for which the activ-
ity and weight had opposite signs were assigned impor-
tance values of zero ( Johnson et al., 2009; McDuff,
Frankel, & Norman, 2009). Random effects t tests were
used to reveal regions whose mean importance values re-
liably differed from zero. Except where otherwise indi-
cated, importance maps were thresholded at p < .05
(corrected) based on the combination of a voxel height
threshold of p < .005 (two tailed) and a minimum cluster
extent threshold of 45 voxels. These thresholds were de-
rived based on Monte Carlo simulations implemented in
the AFNI program 3dClustSim; spatial smoothness for the
simulations was estimated using the AFNI program
3dFWHMx, based on a null hypothesis importance map
derived from a classification analysis that used shuffled
class labels (averaged across 50 different shuffled itera-
tions). For visualization, thresholded importance maps
were projected onto the left and right hemisphere in-
flated PALS cortical surface templates using Caret soft-
ware (www.nitrc.org/projects/caret).

RESULTS
Behavioral Results

At test, participants were asked to differentiate Own Life
from Other’s Life events. Overall, they were correct on
0.80 of trials, were incorrect on 0.07 of trials, and were un-
sure on 0.13 of trials. When excluding unsure responses
from analysis, mean hit rate was 0.93, and the mean false
alarm rate was 0.13, indicating that participants rarely indi-
cated false recognition of Other’s Life events (mean d0 =
2.87; above chance, t(15) = 16.88, p < 10−10). Figure 2
depicts the full distribution of behavioral responses across
the eight response options, along with the mean accuracy
and RT associated with each. One participant (s01) only
indicated Familiarity responses on 0.04 of Own Life events,
whereas he indicated Recollection responses on 0.88 of
these events; because it is unclear if this participant prop-
erly appreciated the subjective distinction between Recol-
lection and Familiarity, his data are excluded from Figure 2
as well as all behavioral and fMRI analyses involving con-
trasts between or within these response types.
Collapsing across Strong and Moderate response sub-

types, participants were significantly more accurate (0.98
vs. 0.94; t(14) = 2.58, p = .021) and faster (1.32 vs.
1.60 sec; t(14) = 4.84, p = .0002) when indicating Recol-
lection than when indicating Familiarity. Familiarity re-
sponses were more accurate than Know (0.84)
responses (t(14) = 2.28, p = .038), although mean RTs
did not reliably differ ( p = .22). When comparing Strong
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Recollection (Strong Rec) and Moderate Recollection
(Mod Rec) responses, accuracies did not differ ( p =
.44), but RTs were significantly faster for Strong Rec
(t(14) = 11.08, p< 10−7). When comparing Strong Famil-
iarity (Strong Fam) and Moderate Familiarity (Mod Fam)
responses, Strong Fam responses were more accurate
(t(14) = 2.70, p = .017), but RTs did not differ ( p =
.31). Accuracies for Sure New and Probably New (Prob
New) responses significantly differed (t(15) = 5.05, p =
.0001), as did RTs (t(15) = 8.85, p < 10−6). Notably, nei-
ther the accuracy of participants’ responses nor their use
of the memory rating scale differed as a function of
whether the event sequences being tested had been
captured during the first, second, or third week of
camera wearing (all ps > .1; Table 1).

fMRI Results

A series of MVPA decoding analyses were performed to
evaluate how accurately multivariate classifiers could dis-

criminate fMRI activity patterns associated with distinct
memory retrieval experiences, and importance maps were
generated to determine which regions were most diagnos-
tic for specific classifications. First, we trained and tested
whole-brain classifier models (excluding motor, premotor,
and cerebellar regions) on data from individual partici-
pants. Given the relatively low number of incorrect trials
(i.e., Misses and False Alarms), all classification analyses
were restricted to data from correctly performed trials
(i.e., Hits and CRs). We also excluded Hit trials for which
participants indicated a Know response, as such responses
may reflect autobiographical semantic knowledge (i.e., rec-
ognizing a personally relevant object in the photos, such as
one’s bicycle), rather than autobiographical episodic mem-
ory (Tulving, 1989). Moreover, although the average Know
response rate was 0.14 for Own Life trials, the degree of
Know responding varied widely across participants; impor-
tantly, seven participants had an insufficient number of
Know hits (i.e., <15 trials) to warrant its inclusion as a
stand-alone condition of interest.

Table 1. Behavioral Performance for Own Life Events Captured during Each Week of Camera Wearing

Overall Hit Rate Proportion Rec Hits Proportion Fam Hits Proportion Know Hits

Week 1 0.93 0.37 0.46 0.16

Week 2 0.93 0.39 0.44 0.17

Week 3 0.94 0.40 0.43 0.17

Figure 2. (A) Distribution of behavioral responses to Own Life events (blue) and Other’s Life events (red). (B) Mean accuracy associated with each
response option. (C) Mean response times for correct trials. Note that “Unsure” trials are not included in B and C because we cannot assess the
correctness of such responses.
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The results of the within-participant classification anal-
yses are reported in Figure 3A. We first collapsed across
more subtle mnemonic distinctions, assessing the neural
discriminability of all recognized Own Life events (i.e.,
Hits, collapsed across Recollection and Familiarity) versus
correctly rejected Other’s Life events (i.e., CRs). Classifi-
cation of Hits versus CRs was extremely accurate (mean
AUC = 0.920; t(15) = 32.62, p < 10−14), with robust
decoding observed for every participant’s data (AUC
range = 0.79–0.97). Notably, when only the top 10% of
the classifier’s most “confidently” made guesses were
considered for each participant (cf. Uncapher et al.,
2015; Rissman et al., 2010), mean classification perfor-
mance rose to AUC = 0.987, with perfect performance
(AUC = 1.0) obtained in 9 of 16 participants. This indicates
that the subset of test trials that the classifier deemed to be
the most paradigmatic examples of Hits and CRs were
nearly always true examples of those classes. When the
Hits-versus-CRs classification analysis was rerun 50 times
for each participant with randomly shuffled class labels,
decoding performance (mean AUC = 0.5003, range =
0.49–0.52) converged on the theoretical null hypothesis
level (0.5), indicating that no insidious biases were pres-
ent in our analysis workflow.

We next examined whether the classifier’s ability to dis-
tinguish Hits and CRs diminished as the probed memories
became more temporally remote. This was not the case;
separate classifier models using only the Hit trials from
the first, second, or third week of camera wearing showed
roughly equivalent decoding performance (AUCs = 0.870,
0.880, and 0.903, respectively; F(2, 28) = 2.46, p= .10). In
an attempt to decode the temporal remoteness of a mem-
ory, we trained a classifier to discriminate Week 1 Hits
versus Week 3 Hits, but performance did not reach sig-
nificance (AUC = 0.545, p = .13). This was also the case

when the analysis was restricted to the Recollection Hits
(AUC = 0.549, p = .16). Thus the remainder of our re-
ported analyses combine events captured across all
3 weeks of camera-wearing.
When Hits were broken down by whether partici-

pants indicated Recollection or Familiarity, the classifier
showed a modest advantage for decoding Rec Hits versus
CRs (AUC = 0.928) as compared with Fam Hits versus CRs
(AUC = 0.905; difference: t(14) = 2.45, p= .028). Further-
more, Rec Hits could be reliably discriminated from Fam
Hits (AUC = 0.719; t(14) = 12.90, p < 10−8). Importantly,
this was also the case when Mod Rec Hits were contrasted
with Strong Fam Hits (AUC = 0.583; t(11) = 3.57, p =
.0044), despite these two trial types being closely matched
on accuracy and RT. Within mnemonic categories, grada-
tions in retrieval strength could also be decoded, although
this distinction was more robust for Strong versus Mod
Rec (AUC = 0.640; t(10) = 4.01, p = .0025) than for
Strong versus Mod Fam (AUC = 0.563; t(10) = 2.39,
p= .038, uncorrected). Finally, high confidence CRs (Sure
New) were readily discriminable from low confidence CRs
(Prob New; AUC = 0.671; t(12) = 4.71, p < 10−3). For
each of these binary classification schemes, comparable
decoding performance was obtained when the classifier
model was trained on the pooled data from all but one
participant and tested on the held-out data from that par-
ticipant (Figure 3B). Indeed, within-participant and across-
participant decoding performance did not reliably differ
for any of the classification schemes reported in Figure 3,
when Bonferroni correcting for seven paired comparisons.
To evaluate which brain regions most strongly and consis-

tently contributed to the success of our within-participant
classification analyses, we generated importance maps re-
flecting the mean weighting of individual voxels (Figure 4).
Importance maps for the Hits-versus-CRs classification

Figure 3. Classification results. (A) Classifier performance from within-participant analysis, using a 10-fold cross-validation scheme. (B) Classifier
performance from across-participant analysis, using a leave-one-participant-out scheme. In both plots, vertical bars represent the mean AUC value for
each two-class discrimination. Colored markers indicate AUC values from individual participants; only participants with 15 or more trials per class are
included in each analysis. The dashed line represents chance-level decoding (AUC = 0.5).
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revealed an extensive set of frontoparietal regions, includ-
ing both lateral and medial areas, that were positively pre-
dictive of Hits and a sparser set of visual cortical regions,
including bilateral occipital lobe and right inferior temporal
lobe, that were positively predictive of CRs.
Relative to the Hits-versus-CRs classification, maps for

the Rec Hits versus Fam Hits classification implicated
some of the same regions (especially along the medial
wall), but there were a number of notable differences
in the overall pattern. For instance, the lateral frontal re-
gions that were positively predictive of Hits in the pre-
vious analysis were not diagnostic of the Rec versus Fam
distinction, nor were the bilateral regions of the intra-
parietal sulcus. Rather, within the frontal lobe, only medial
frontal areas, together with the bilateral anterior insula,
were predictive of Rec Hits. Within the parietal lobe, diag-
nostic voxels associated with Rec Hits were found in the
left angular and supramarginal gyri as well as in the retro-
splenial cortex (RSC)/posterior cingulate cortex (PCC).
Bilateral regions of the hippocampus and parahippo-
campal cortex were also strongly implicated in the dis-
criminability of Rec Hits versus Fam Hits. The absence
of significant negative effects in the importance maps

indicates that engagement of these recollection-related
regions was more consistently informative to the classifier
than engagement of familiarity-preferring regions.

We next examined the importance maps associated
with gradations of recollection (Strong Rec vs. Mod
Rec) and familiarity (Strong Fam vs. Mod Fam). Because
these classifications were based on a select subset of each
participant’s Hit trials, several participants lacked the
requisite trial counts (a minimum of 15 trials per class) to
be included in one or both analyses, leaving us with only
11 participants for each analysis. This substantially reduced
the statistical power of the group t tests, as did the fact
that lower classification accuracy levels are typically asso-
ciated with noisier and more variable importance maps.
Given the lower power, when we applied our stringent
criteria for whole-brain corrected significance ( p <
.005, two tailed; cluster extent ≥ 45 voxels), no clusters
achieved significance in the Strong Rec versus Mod Rec
map, and only the RSC/PCC clusters achieved signifi-
cance in the Strong Fam versus Mod Fam map. For
exploratory purposes, we then rendered each map at
the same voxel-level threshold ( p < .005, two tailed),
but without the cluster extent requirement (Figure 4,

Figure 4. Classification importance maps. Group-averaged maps of classifier importance values are shown for four binary classifications of interest. All
maps are masked to only include voxels whose importance values significantly differ from zero at p < .005 (two tailed). The upper two maps also
impose a minimum cluster extent threshold of 45 voxels to yield a whole-brain corrected threshold of p < .05. Warm colors indicate voxels for which
increased activity biased the classifier to predict Condition A, and cool colors indicate voxels for which increased activity biased the classifier to
predict Condition B. Importance values are shown in raw arbitrary units.
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bottom). For the classification of recollection strength,
voxels that were positively predictive of Strong Rec
were found in the left angular gyrus and bilateral
vmPFC, whereas voxels that were positively predictive
of Mod Rec were found in the left lateral and dorsome-
dial PFC. For the classification of familiarity strength,
voxels that were positively predictive of Strong Fam
were most prominent in bilateral RSC/PCC but also
seen in the left anterior temporal pole, left insula, right
posterior middle temporal gyrus, and bilateral vmPFC.
Although, in the surface rendering, this vmPFC region
appears to overlap with that seen in the Strong Rec versus
Mod Rec map, in actuality (i.e., in volumetric space), these
maps only share two overlapping voxels. No regions
showed signal changes that were positively predictive of
Mod Fam.

The results described thus far were all derived from bi-
nary classification analyses where the model was trained
to discriminate between trials from two distinct classes.
To determine whether a classifier could reliably predict
a trial’s mnemonic status out of a larger set of possible
options, we trained a new classifier model to differentiate
six classes of trials, including two levels of recollection,
two levels of familiarity, and two levels of novelty. Again,
incorrectly performed trials (i.e., Misses and False
Alarms) and Know trials were excluded, and classifica-
tions were only run on data from the eight participants
who had at least 15 trials of each of the six classes. The
results of this analysis are reported in the form of a con-
fusion matrix (Figure 5), reflecting the distribution of the
classifier’s guesses for each of the six trial types. The six-

way classification achieved an accuracy level of 34.9%,
which was significantly better than chance-level guessing
(empirically estimated to be 16.4% based on rerunning
the analysis with shuffled class labels; t(7) = 7.22, p <
10−3). For each column of the confusion matrix (reflect-
ing the participant’s actual response), the classifier’s
modal guess was always the correct guess. Perhaps more
importantly, however, the distribution of the classifier’s
incorrect guesses followed an orderly profile reflecting a
hierarchy of memory states. For instance, when Strong
Rec trials were misclassified, they were most often mis-
classified as Mod Rec, and vice versa for Mod Rec trials.
Strong Fam trials were almost equally likely to be mis-
classified as Mod Rec or Mod Fam but were rarely misclas-
sified as New. In contrast, for Mod Fam trials, the classifier
incorrectly guessed Prob New with a similar frequency as
its guesses of Mod Rec and Strong Fam. In addition, for
trials where participants indicated that photos from some-
one else’s life were Sure New, the classifier rarely misclas-
sified these events as recognized but rather erred by
predicting the wrong level of novelty decision confidence.
In a final set of analyses, we evaluated the degree to

which the brain patterns associated with autobiographi-
cal retrieval in the present paradigm resemble those pre-
viously found to be diagnostic of memory states in a
laboratory-based face recognition memory task (Rissman
et al., 2010). To this end, we trained a classifier model on
the face memory data collected from the 16 independent
participants in Rissman et al. (2010) and tested its ability
to decode memory states (Hits vs. CRs and Rec Hits vs.
Fam Hits) within the 16 participants in this autobiograph-
ical memory study. We also conducted the reverse anal-
ysis, training on these data and testing on the data from
our earlier laboratory-based memory study. Note that, in
the laboratory-based study, Rec Hits versus Fam Hits was
operationalized as Rec Hits versus High-Confidence Fam
Hits (that study’s response options only included one
level of recollection but two levels of familiarity); in this
study, Rec Hits included both Strong and Mod Rec, and
Fam Hits included both Strong and Mod Fam. The results
of the across-experiment classifications are reported in
Table 2. A classifier trained on data from the laboratory-
based memory study and tested on the autobiographical
memory study was able to reliably decode both Hits ver-
sus CRs (t(15) = 7.62, p< 10−7) and Rec Hits versus Fam
Hits (t(14) = 7.91, p < 10−7), with a significant perfor-
mance advantage for the former (t(14) = 3.16, p =
.004). A classifier trained on data from the autobiograph-
ical memory study and tested on the laboratory-based
memory study was also able to reliably decode Hits ver-
sus CRs (t(15) = 7.22, p< 10−7) and Rec Hits versus Fam
Hits (t(14) = 5.95, p < 10−5), with a marginally signifi-
cant performance advantage for the latter (t(14) = 2.02,
p = .053). Interestingly though, the levels of across-study
classification performance, when applied to the present
autobiographical data, were substantially lower than that
observed using within-study classification (e.g., Hits vs.

Figure 5. Confusion matrix for six-way classification. Percentages
indicate the distribution of the classifier’s guesses for each trial type.
Values along the diagonal indicate the probability of the classifier
indicating the correct class label. Results are averaged across
classifications run on data from eight participants who had at least
15 trials in each of these six classes.
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CRs: mean within-study AUC = 0.92, mean across-study
AUC = 0.75).

DISCUSSION

Our experimental protocol, featuring the use of wearable
cameras, allowed us to “noninvasively” catalog a diverse
array of potentially memorable events from our partici-
pants’ day-to-day lives without drawing particular atten-
tion to the encoding of these memories. Although we
had little control over what activities participants engaged
in during their 3 weeks of camera wearing, we gained
ecological validity in that we could later probe their mem-
ories for real-world autobiographical events and measure
the associated brain activity patterns. While in the scanner,
participants evaluated brief sequences of never-before-
viewed photographs of their own events, interspersed with
foil sequences that were captured by other participants’
cameras. MVPA methods were used to characterize the
degree to which various neural signatures of memory re-
trieval could be reliably decoded on individual trials and
provided information about which brain areas carried
diagnostic signals.
Our analyses revealed several notable results. First,

when we trained a classifier model to discriminate brain
patterns associated with correct recognition of one’s own
events versus CRs of someone else’s events, it was able to
achieve near-perfect decoding accuracy (mean AUC =
0.92). This performance level exceeded the level observed
in our previous face memory study (mean AUC = 0.83;
Rissman et al., 2010), suggesting that the heterogeneity
of the real-world photographic probes did not diminish
our model’s ability to hone in on a highly consistent neural
signature of recognition. By having participants make their
responses using an 8-point memory rating scale that in-
cluded two levels of recollection, familiarity, and novelty,
we were able to show that our models could reliably de-
termine whether participants were subjectively experienc-
ing each memory state to a stronger or weaker degree.
The neural signatures of these distinct memory states
were sufficiently consistent across participants to yield
comparable accuracy levels even when classifier models
were trained and tested on data from different partici-

pants. Moreover, a six-way classification analysis showed
that a classifier could infer which of these six states the
participant was currently experiencing with accuracy levels
well above chance. Importantly, classification errors
followed a predictable pattern, illustrating that the clas-
sifier had acquired sensitivity to the full range of memory
retrieval outcomes and their associated neural representa-
tions. Finally, we found that a classifier model trained on
data from our prior laboratory-based face recognition task
(Rissman et al., 2010), which required a 5-point response
from an independent group of participants, could largely
succeed at decoding the mnemonic status of events en-
countered in our experiment, which required an 8-point
response. The converse was also true. Thus, the neural
signatures associated with episodic retrieval appear to be
relatively well preserved when probing for rich autobio-
graphical events at 1- to 3-week retention intervals and
for constrained laboratory-based memories of faces
probed at a brief retention interval.

Given that our classifier models were trained and tested
on whole-brain data (excepting motor-related regions),
the neural signatures that the classifier learns as diagnostic
for a given mnemonic distinction end up being broadly
distributed throughout the brain. Accordingly, even weakly
diagnostic voxels may make some small contribution to
the classifier’s success, and the diagnosticity of individual
voxels can be highly variable across participants. Thus,
assessment of thresholded group-averaged importance
maps will always be an imperfect approximation of the
neural signatures of each state. Still, these maps can be
informative by showcasing which regions are most con-
sistently diagnostic. For the classification of Hits versus
CRs, the importance maps revealed a prominent contribu-
tion of lateral frontal areas and the intraparietal sulcus,
both with a left hemisphere bias as is typical in fMRI studies
of retrieval success (i.e., old > new) effects (Hutchinson
et al., 2014; Kim, 2013; McDermott et al., 2009). Although
these frontoparietal regions are highly diagnostic of re-
cognition, one should not assume that they collectively
constitute the site of the memory engram. Rather, these
regions likely contribute to the cognitive and attentional
control processes needed for memory search, monitoring,
and mnemonic evidence accumulation. Midline regions,
including large swaths of the medial PFC and parietal

Table 2. Across-experiment Classification Performance (AUC)

Train Laboratory-based
↓

Test Real-world

Train Real-world
↓

Test Laboratory-based

Mean Std Dev Range Mean Std Dev Range

Hits vs. CRs 0.75 0.09 0.54–0.90 0.67 0.07 0.53–0.79

Rec Hits vs. Fam Hits 0.69 0.06 0.55–0.79 0.75 0.12 0.53–0.98

The left-hand column reports results from two classification analyses where the classifier was trained on data from a laboratory-based recognition
memory fMRI study (Rissman et al., 2010) and tested on data from this study. The right-hand column reports results from the reverse analysis
scheme.
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cortex, together with the hippocampus, were also diagnos-
tic of Hits. In contrast, voxels diagnostic of CRs were most
prominent in visual areas, including the occipital lobe and
right inferior temporal cortex, presumably responding to
the novelty of the people, places, and activities depicted
in others’ photos. When a classifier was trained to differen-
tiate recollection and familiarity (Rec Hits vs. FamHits), the
resulting importance map predominantly highlighted a set
of recollection-preferring regions—including medial PFC,
ventral posterior parietal cortex inclusive of angular gyrus,
the RSC/PCC, and the hippocampus—sometimes referred
to as the “core recollection network” (Rugg & Vilberg,
2013). This network shows considerable overlap with the
default mode network, presumably owing to the fact that
both undirected mentation and episodic retrieval entail
self-referential processing and representation of informa-
tion retrieved from (or constructed based on) memory
(Andrews-Hanna, Saxe, & Yarkoni, 2014; Kim, 2012; Spreng
& Grady, 2010).

If, instead of considering the distinction between rec-
ollection and familiarity, we consider the distinctions
within recollection and familiarity, an intriguing profile
of results emerges. Despite the fact the each classifica-
tion compared a stronger memory with a weaker memory,
the voxels that showed significant importance in the
Strong Rec versus Mod Rec classification had essentially
no overlap with those that showed importance in the
Strong Fam versus Mod Fam classification (only two voxels
in the entire brain showed common effects). Although
some interpretive caution is warranted, given that these
maps are based on data from a restricted set of subjects
(n = 11) and displayed at an uncorrected threshold, the
neuroanatomical divergence is striking. When attempt-
ing to decode the strength of recollection, the classifier
heavily anchored on activity levels in the left angular
gyrus and vmPFC as predictive of Strong Rec. Previous
fMRI studies have found the angular gyrus to be particu-
larly sensitive to the amount of information that partici-
pants recollect (Vilberg & Rugg, 2007, 2009), and activity
patterns within this region show greater content-specific
reinstatement effects when more information is recalled
(Leiker & Johnson, 2014) or when recall is more vivid
(Kuhl & Chun, 2014). Such findings suggest a plausible
role for this region in transiently buffering (Vilberg &
Rugg, 2008) or binding (Shimamura, 2011) the reinstated
mnemonic content represented within other brain re-
gions. The vmPFC is thought to play a critical role in self-
referential processing (Denny, Kober, Wager, & Ochsner,
2012; Sajonz et al., 2010), which likely explains its promi-
nent involvement when participants attempt to project
themselves back into and mentally “relive” events depicted
in their photographs (St Jacques et al., 2011). Thus, it is
sensible that both regions are highly diagnostic of recol-
lection strength in our data. Intriguingly, regions of the left
lateral PFC and dorsomedial PFC showed the opposite pro-
file, with their engagement being predictive of Mod Rec. It
is possible that, when our participants experienced a mod-

erate amount of recollection, they attempted to use the
few details they could recollect to cue their memory in
hopes of recovering additional contextual information;
these regions may potentially contribute to that strategic
search and monitoring process (Dobbins, Foley, Schacter,
& Wagner, 2002). For the decoding of familiarity strength,
the most diagnostic brain region was bilateral RSC/PCC.
The fact that this region was diagnostic of familiarity
strength and not recollection strength was surprising, con-
sidering that this region was positively diagnostic of recol-
lection in the Rec Hits versus Fam Hits analysis and is
often associated with recollection in the literature (Rugg
& Vilberg, 2013). However, prior fMRI studies and meta-
analyses have also implicated this region in familiarity
(Horn et al., 2015; Qin et al., 2012; Montaldi, Spencer,
Roberts, & Mayes, 2006). Moreover, Binder, Desai, Graves,
and Conant (2009) have suggested that PCC may be a crit-
ical hub for linking episodic and semantic information. In
our study, reports of strong familiarity may have been influ-
enced by personal semantics (Renoult, Davidson, Palombo,
Moscovitch, & Levine, 2012), such as the recognition that
the depicted event is consistent with the kind of thing
one tends to do. The presence of diagnostic signals in the
anterior temporal lobe, also a component of the semantic
network (Binder et al., 2009), may likewise be attributable
to participants’ reliance on personal semantic knowledge
in their assessment of familiarity. Taken together, the
divergence of these maps suggests that the respective
classifiers are preferentially relying on different brain re-
gions to provide information about memory strength in
the domain of recollection, than in the domain of familiar-
ity. This affirms a qualitative, rather than purely quantita-
tive, distinction between these expressions of retrieval.
A particularly compelling aspect of the present results

was our ability to train a six-way classifier model to dis-
criminate between strong and moderate expressions of
recollection, familiarity, and novelty based on the under-
lying brain activity patterns. Although the six-way classifi-
cation accuracy of 35% was far from perfect, the result is
impressive when one considers that the empirically vali-
dated chance accuracy was 16.4%. Furthermore, when
the classifier guessed incorrectly, its guesses reflected a
gradation in activity patterns that appeared to parallel
the gradation within each mnemonic state. For example,
the classifier tended to confuse strong recollection with
moderate recollection and vice versa, rather than confus-
ing these trial types with familiarity or novelty. Similarly,
strong and moderate levels of perceived novelty were
rarely confused with recollection or familiarity, indicating
that participants’ decision confidence was clearly dissoci-
ated from their memory state. To our knowledge, our
data constitute the first demonstration that brain patterns
measured during retrieval can be used to decode the spe-
cific level of memory associated with a given probe stim-
ulus out of a wide array of potential options.
Another noteworthy result was our demonstration that

fMRI activity patterns measured in response to real-world
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photographic probes in this study were sufficiently simi-
lar to those measured in response to face stimuli in our
previous study (Rissman et al., 2010) so as to allow a
classifier model trained on one data set to reliably predict
the mnemonic status of individual trials in the other data
set. This remarkable across-experiment generalization
was found despite the fact that the two data sets were
acquired on different scanners with different participants
making judgments on very different types of stimuli in tasks
requiring distinct memory-to-response mappings. Although
across-experiment decoding performance did not achieve
the accuracy levels observed in the respective within-
experiment decoding analyses, the reliability of the effects
suggests that at least a subset of the neural processes
engaged during recognition (facilitating Hits vs. CRs decod-
ing) and recollection (facilitating Rec vs. Fam decoding) are
relatively well preserved across these two distinct tasks.
Our successful across-experiment classification results

appear to challenge the view that memory judgments
made in response to laboratory-encoded stimuli engage
fundamentally different mechanisms than judgments made
in response to probes that evoke the retrieval of one’s own
personal past (Roediger & McDermott, 2013). One reason
that a recent meta-analysis (McDermott et al., 2009) of
laboratory-based and autobiographical memory studies
showed such limited overlap between the regions engaged
during these two types of tasks may be that most of the
included laboratory-based studies used old/new item rec-
ognition judgments whereas most of the included auto-
biographical studies required judgments that necessarily
evoked recollection. Thus, the apparent dissociation
may in fact be driven by the disparate nature of the mne-
monic retrieval processes engaged during laboratory-
based and autobiographical memory tasks. Indeed, a
meta-analysis of Remember/Know judgments based exclu-
sively on data from standard laboratory-based memory
studies (Kim, 2010) reported a map of Remember >
Know effects that looks strikingly similar to McDermott
et al.’s (2009) meta-analytic map of autobiographical re-
trieval studies. Conversely, a recent meta-analysis of
standard old/new region effects (i.e., Hits > CRs), again
based exclusively on laboratory-based memory studies
(Kim, 2013), yielded a map that looks virtually identical to
McDermott et al.’s (2009) meta-analytic map of laboratory-
based memory studies. Because our across-experiment
classification analyses inherently matched the two studies
on the mnemonic distinction of interest (either Hits vs.
CRs or Rec vs. Fam), this may have enabled our classifier
model to hone in on the relevant neural patterns that
underlie these respective mnemonic distinctions, distinc-
tions that appear common to real-world and laboratory-
based memories. Future work will be needed to isolate
conditions under which retrieval-related brain activity pat-
terns evoked during laboratory-based and autobiographical
memory tasks may diverge, because neuropsychological
dissociations clearly exist between these two classes of
memory (Palombo et al., 2015; Patihis et al., 2013; LePort

et al., 2012) and our across-experiment classification levels
were lower than our within-experiment levels.

The present investigation was motivated in part by a de-
sire to determine how accurately the presence or absence
of individual event memories could be detected based on
analysis of the evoked fMRI activity pattern. One goal was
thus to weigh in on potential forensic uses of brain scans as
a means for detecting experiential knowledge (Meegan,
2008). Our classification results showcase extraordinarily
accurate predictions of whether participants were viewing
photos from their own past experiences as well as a reason-
ably accurate ability to infer the specific subjective nature of
one’s retrieval state. The fact that our classifier models
could predict mnemonic retrieval outcomes even in partic-
ipants whose data the classifier was never trained on high-
lights the robustness of these neural signatures and their
potential applicability. However, there are several reasons
to be cautious when interpreting these results. For one,
our use of an explicit memory task prevented us from
evaluating whether we could detect neural signatures of
autobiographical retrieval triggered automatically in re-
sponse to salient probe stimuli. Furthermore, because par-
ticipants performed so accurately on our task, this left us
with very few false memories and forgottenmemories, pre-
cluding what might have been an interesting investigation
into illusory memory and implicit expressions of memory,
respectively. By restricting our analyses to correctly per-
formed trials, the memory states that the classifier was
trained to decode were inextricably linked to participants’
subjective retrieval experiences. Other recent results sug-
gest that these subjective states could be willfully manipu-
lated when participants were given incentives to do so
(Uncapher et al., 2015). Thus, the present results should
not be taken as evidence that brain-based memory detec-
tion procedures are ready for applied uses, especially not in
judicial or forensic contexts. Nonetheless, these memory
decoding data add to the growing number of demonstra-
tions indicating that there is a wealth of information con-
tained within single-trial fMRI activity patterns that, when
analyzed with the right techniques, can reveal key features
of one’s mnemonic state.
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Note

1. One participant (s08) did not have his camera turned on
enough during Weeks 2 and 3 of the camera-wearing period,
and thus we could only generate 36 event sequences per week
for those weeks. To compensate for this reduction in stimulus
materials, we were able to generate 90 viable event sequences
from his Week 1 photos. Nonetheless, with only 162 event se-
quences in total, we reduced this participant’s memory test to
nine runs, each with 10 events from Week 1, four events from
Week 2, and four events from Week 3. Because of this imbal-
ance, this participant’s data were excluded from any classifica-
tion analyses that subdivided events based on their week of
occurrence.
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