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Functional magnetic resonance imaging (fMRI) is a powerful research tool to understand
the neural underpinnings of human memory. However, as memory is known to be
context-dependent, differences in contexts between naturalistic settings and the MRI
scanner environment may potentially confound neuroimaging findings. Virtual reality (VR)
provides a unique opportunity to mitigate this issue by allowing memories to be formed
and/or retrieved within immersive, navigable, visuospatial contexts. This can enhance
the ecological validity of task paradigms, while still ensuring that researchers maintain
experimental control over critical aspects of the learning and testing experience. This
mini-review surveys the growing body of fMRI studies that have incorporated VR to
address critical questions about human memory. These studies have adopted a variety
of approaches, including presenting research participants with VR experiences in the
scanner, asking participants to retrieve information that they had previously acquired in a
VR environment, or identifying neural correlates of behavioral metrics obtained through
VR-based tasks performed outside the scanner. Although most such studies to date
have focused on spatial or navigational memory, we also discuss the promise of VR in
aiding other areas of memory research and facilitating research into clinical disorders.
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INTRODUCTION

Virtual reality (VR) is a term used to encompass any computer-generated experience that induces
a sense of presence – the feeling of being transported to and inhabiting a place different from one’s
immediate surroundings (Steuer, 1992; McCreery et al., 2013). Given the intimate relationship
between context and memory (Godden and Baddeley, 1975; Smith, 1988; Ramirez et al., 2013),
VR offers a powerful means to enhance the ecological validity of memory research by providing
realistic virtual environments (VEs) in which participants can learn information and/or draw upon
past memories to guide their behavior. These VEs can be highly customized to meet the needs of
a wide variety of tasks and offer experimental control over the learning experience. Given these
characteristics, along with the recent surge in VR technological development and accessibility
(Figure 1A), it is unsurprising that cognitive neuroscientists interested in the brain mechanisms
of memory have increasingly found ways to incorporate VR into their fMRI studies.
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Experimental designs employing VR and fMRI to study
memory predominantly fall into three categories: (1) having
participants actively engage in VR experiences in the scanner
while functional neuroimaging data are acquired, (2) scanning
participants as they are prompted to retrieve information
previously acquired in a VE, and (3) identifying structural or
functional correlates of behavioral metrics obtained through the

use of VR (Figure 2). One virtue of VR as an experimental
tool is its ability to enable the translation of research paradigms
that have been used extensively in animal research, which may
not otherwise translate readily to human participants for ethical
or technical reasons. For example, a direct human analog of
the Morris water maze – dropping a participant into a pool of
cloudy water in search of an invisible platform – would likely

FIGURE 1 | (A) A limited showcase of currently available VR technologies. Devices are sorted as a function of their ability to provide the participant with a sense that
they are “in” a virtual environment (immersiveness; x-axis) and the system’s affordability (y-axis). “Window on World” refers to a traditional desktop and monitor setup.
CAVE = cave automatic virtual environment – a real world room that leverages projectors and motion capture to create room-size virtual experiences. MR-safe
equipment (joystick and buttonbox: Current Design, Inc., Philadelphia, PA, United States, goggles: cinemavision.biz) can be used during MR scans. (B) Examples of
common perspectives presented to participants while actively navigating VEs or during spatial memory tests. Both first- and third-person viewpoints provide an
egocentric perspective whereas a bird’s eye view provides an allocentric one.
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FIGURE 2 | Examples of VR-fMRI experimental paradigms. (A) MR-compatible joysticks/gamepads and 3D stereoscopic goggles allow for participants to enter a VE
while laying supine in the scanner. By time-locking events of interest (e.g., a participant’s heading direction while traversing the world) to the corresponding fMRI
signals, researchers can identify neural correlates associated with specific task conditions or behaviors. In this example, entorhinal cortex activity is associated with
the grid-cell-like property of hexagonal symmetry during navigation. Figures adapted with permission from Doeller et al. (2010). (B) Participants can perform
VR-based learning tasks outside of the scanner, and their memory for information encoded within a VE can later be tested in the scanner using traditional fMRI task
paradigms. In this example, trials can be coded based on each object’s properties within the VE (e.g., whether or not the object was located at a pertinent
decision-point) to reveal incidental neural differences during retrieval as a function of the encoding experience. Figures adapted with permission from Janzen and
Weststeijn (2007). (C) Just as questionnaires and computer tasks reveal individual differences in a host of behavioral metrics, VR can serve as an instrument to
gather unique behavioral data points (e.g., number of times a participant revisited a particular location). Researchers can then examine whether these performance
metrics can account for variance in brain activity or connectivity measured in a completely different context (e.g., while participants are simply resting in the scanner).
Figures adapted with permission from Wong et al. (2014).

raise the ethical eyebrows of any Institutional Review Board, yet
such a task paradigm can be implemented in VR. Likewise, VR
empowers neuroscientists to create experiments that would either
be impossible or impractical without the use of VR (e.g., imposing
invisible boundaries, altering/morphing environmental features,
or teleporting a participant between contexts).

Researchers may go to great lengths to increase the ecological
validity of their tasks, given the growing appreciation that
laboratory-encoded stimuli and real-world events tend to evoke
different brain activation profiles (Roediger and McDermott,
2013; Chen et al., 2017; Chow et al., 2018). For instance, wearable
cameras can be used to capture photographs of participants’ real-
world experiences so that memories for these events can later
be probed in the scanner (Chow and Rissman, 2017). A related
approach involves having participants engage in real-world

navigation tasks. In one such study, Schinazi and Epstein
(2010) created a 3-km outdoor walking course for participants
to traverse. Later, fMRI data were collected while participants
were tested on their recollection for buildings encountered on
the route. While the fMRI results revealed interesting effects
within visuospatial processing regions such as the retrosplenial
cortex, reflecting the interplay between landmark-identification
and route direction at navigationally pertinent decision points,
the authors acknowledged that their behavioral results were
largely consistent with those of a similarly designed VR study
by Janzen and Weststeijn (2007). A subsequent fMRI study
then showed that comparable neuroimaging findings could be
obtained used a VR-based route navigation task (Wegman and
Janzen, 2011). Although real-world task paradigms will continue
to have value in memory research, VR paradigms have the
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potential to provide a less labor-intensive and more highly
controlled investigational medium that sacrifices relatively little
in terms of neural processing and experimental outcome.

While VR allows for precise control over stimuli and contexts,
providing greater consistency across participants than can
typically be attained in real-world designs, it is not without
its caveats. Recently, there has been debate as to whether VR-
based navigation should be considered true navigation (Taube
et al., 2013; Minderer et al., 2016). One of the most crucial
arguments against the fusion of VR and fMRI is that when
lying in a scanner, vestibular self-motion (idiothetic) cues cannot
match external landmark-based (allothetic) cues since otolith
organs will persistently relay a signal that the individual is
supine. Decoupling of cues can cause a reorientation (Wang and
Spelke, 2002) and force one system into domination (Golledge,
1998; Dolins and Mitchell, 2010). Further adding to these
complications, visual cues alone have proven insufficient to elicit
accurate distance measurements (Witmer and Kline, 1998) and
turn responses (Riecke et al., 2012), which can lead to impaired
navigation. Meanwhile, on a neuronal level, the activity pattern
of cells implicated in spatial representation, such as place cells,
grid cells, and head-direction cells (Buzsáki and Moser, 2013)
have been shown to differ between real-world environments and
VEs (Chen et al., 2013; Ravassard et al., 2013; Aghajan et al.,
2015).

Nevertheless, the neural responses of spatially selective cells
in VR resemble those observed in real navigation under certain
circumstances (Domnisoru et al., 2013; Aronov and Tank, 2014;
Killian and Buffalo, 2018). Additionally, VR navigation has been
shown to maintain hippocampal theta rhythms (Ekstrom et al.,
2005), albeit with some differences from real-world navigation
(Jacobs, 2014; Aghajan et al., 2017; Bohbot et al., 2017). Various
VR accessories, including head-mounted displays (HMD) can
be used to increase participants’ immersion (Figure 1A; Dede,
2009) and, subsequently, spatial understanding (Ruddle et al.,
1997; Bowman and McMahan, 2007). Importantly, Ganesh et al.
(2012) found that increasing participants’ self-identification with
an avatar resulted in increased engagement of left inferior
parietal lobe regions associated with self-identification and
improved recognition memory for traits associated with their
avatar. Furthermore, brain activity patterns expressed during
recall remain similar despite encoding in real-world vs. fictional
environments (Spiers and Maguire, 2006). Even navigation
through digital folders (Benn et al., 2015) and abstract conceptual
space (Constantinescu et al., 2016) recruits similar brain
structures and processes.

Given that the overarching goal of cognitive neuroscience
research is to understand the brain mechanisms that give rise
to our thoughts and behaviors, VR affords researchers with
the ability to execute task paradigms that more closely mimic
the way we use our cognition as we dynamically engage with
our environment. This mini-review surveys the burgeoning
neuroimaging literature on VR applications to memory research.
In so doing, we hope to illustrate some creative ways in which
researchers have leveraged VR to increase the ecological validity
of memory experiments and conduct studies that would be
relatively infeasible without the use of VR.

HARNESSING THE AFFORDANCES OF
VR TO AID MEMORY RESEARCH

Although neural recordings from freely moving rodents have
provided crucial insights into spatial memory functioning, ethical
and physical limitations have prevented a direct replication
of these studies in human participants. However, VR offers
researchers boundless, safe, and controllable environments to
conduct analogs of foundational experimental paradigms like
the Morris water maze (MWM; Morris, 1984), radial arm
maze (RAM; Olton et al., 1977), and random foraging tasks.
Indeed, when combined with fMRI, VR has afforded researchers
with the ability to quickly iterate manipulations of different
MWM task features (e.g., distal vs. no cues; visible vs. invisible
platforms) to determine hippocampal dependence (Shipman
and Astur, 2008; Kolarik et al., 2016), identify compensatory
mechanisms following scopolamine injection (Antonova et al.,
2011), examine functional connectivity changes (Woolley et al.,
2015), and investigate the different neural patterns recruited
when using egocentric vs. allocentric navigation strategies
(Rodriguez, 2010a). A research group even recently replicated
their rodent body-behavior findings in humans using a VR
version of the MWM (Müller et al., 2018).

Virtual variations of the RAM have equipped researchers
to study working memory and decision-making in both win-
shift (Demanuele et al., 2015) and win-stay (Cyr et al., 2016)
paradigms. VR also allows for real-time changes to RAM and
similar tasks. For instance, shuffling distal cues and providing
visual navigational guidance (e.g., following arrows on the
ground) has made it possible to disentangle cognitive decision-
making from other processes of interest (Marsh et al., 2010). The
ability to “teleport”, restrict access to certain areas with virtual
“walls”, and track the precise location of the subject within the
VE permit researchers to tease apart place-based and sequence-
based strategies (Igloi et al., 2015). VR versions of the RAM
were also used to assess the integrity of the hippocampus –
predicting risk or severity in a variety of psychiatric disorders
(Astur et al., 2005; Wilkins et al., 2017). Such insights are in
line with the growing trend of using VR to provide objective
diagnostic metrics (Cogné et al., 2017; van Bennekom et al.,
2017). For instance, Migo et al. (2016) identified behavioral and
neural correlates of completing the RAM task in patients with
amnestic mild cognitive impairment (MCI), which extends upon
the work of King et al. (2002) who showed that when changing
virtual viewpoints, MCI patients could not recall the positions
of objects. Similar spatial memory tests have been conducted on
athletes following mild traumatic brain injury (Slobounov et al.,
2010).

Given the expanse of possibilities afforded by VR,
experimental paradigms can move beyond the replication
of rodent studies. By familiarizing participants with a VE,
experimenters can probe a participant’s spatial memory by
asking them to navigate from one location to another – a general
paradigm that also can be used to test orientation, route-learning,
and viewpoint-dependence (Brown et al., 2014; Stokes et al.,
2015; Dimsdale-Zucker et al., 2018). Indeed, many such studies
have used VEs to examine the neural correlates supporting

Frontiers in Neuroscience | www.frontiersin.org 4 June 2018 | Volume 12 | Article 408

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00408 June 13, 2018 Time: 16:13 # 5

Reggente et al. fMRI Memory Research Using VR

navigation under different manipulations such as: using one
landmark vs. many (Wegman et al., 2014), finding one’s way vs.
following a visible path (Hartley et al., 2003), relying on coarse vs.
global strategies (Evensmoen et al., 2013), leveraging survey vs.
route knowledge (Gillner and Mallot, 1998; Wolbers et al., 2004),
tracking paths and distances (Wolbers et al., 2007; Chrastil et al.,
2015), varying head directions (Shine et al., 2016), egocentric
and/or allocentric related manipulations (Wolbers et al., 2008;
Suthana et al., 2009), and navigating towards a goal in healthy
(Rodriguez, 2010b; Brown et al., 2016) and clinical populations
(Thomas et al., 2001). Embedding several such manipulations
within a single VR study, Dhindsa et al. (2014) utilized fMRI to
measure signal fluctuations as participants oriented themselves
towards a learned location in a VE that lost critical features
one-by-one. Their results provided empirical evidence in support
of the Byrne et al. (2007) model of orientation and navigation,
which emphasizes the translation of egocentric representations in
parietal cortex to allocentric representations in the hippocampus.
Furthermore, virtual renditions of familiarized real-world
environments can allow researchers to probe memory for real-
world objects using virtual cues – a technique previously used
to examine the neural correlates of egocentric representations
for objects outside of one’s visual field (Schindler and Bartels,
2013).

The use of concurrent fMRI and VR also begets an
opportunity to examine the neural underpinnings of spatial
information that is being encoded incidentally. For example,
following periods of egocentric navigation, researchers can
provide participants with a spatial memory test using a bird’s
eye view of the environment (Figure 1B) – a metric of
allocentric memory that has been used to explain differences
in navigational ability (Pine et al., 2002). Other examples come
from fMRI studies looking for evidence of pattern separation and
pattern completion processes (Yassa and Stark, 2011). By having
participants complete the same relative distance task across
different, but visually similar, environments, Kyle et al. (2015)
found that the more distinguishable a neural representation is
of an environment (i.e., successful pattern separation), the less
the interference of competing memories will hinder performance.
Relatedly, a human analog of the attractor dynamic model of
mnemonic processing (Leutgeb et al., 2007) was demonstrated
by Steemers et al. (2016): hippocampal responses to VEs that
were constructed by linearly morphing two previously known
VEs exhibited non-linear (sigmoid-like) response properties
indicative of pattern completion, despite participants’ behavioral
reports that they consciously perceived linear morphs. By
leveraging multivoxel pattern analysis in the hippocampus to
decode a participant’s location within a virtual environment,
Hassabis et al. (2009) corroborated the classic function of
hippocampal place cells (O’Keefe and Dostrovsky, 1971), albeit
at a far less granular level. VR-based random foraging tasks have
also been used to identify population-based grid-cell-like activity
patterns in human entorhinal cortex (Doeller et al., 2010) – a
measurement whose consistency over time could be prognostic
of Alzheimer’s Disease risk (Kunz et al., 2015) – and 3D place
coding representations in the human hippocampus (Kim et al.,
2017).

VEs can also be utilized to systematically, and quantitatively,
investigate processes that rely on imagined navigation. For
example, Legge et al. (2012) familiarized participants with
a VE that they were later instructed to use as a “memory
palace” while they implemented the Method of Loci mnemonic
strategy of mentally “placing” a set of to-be-remembered
items along a route within an imagined environment. In this
way, the authors matched the size, detail, and exposure time
to the environment – properties that are often confounded
in traditional implementations of this mnemonic technique
(Yates, 1966). Further, the use of imagined virtual navigation
has revealed fMRI signals that exhibit grid-cell-like properties
(Bellmund et al., 2016; Horner et al., 2016) and activity patterns
associated with location and facing direction (Marchette et al.,
2014). Equalizing environments used for imagination tasks is
particularly relevant in the domain of prospective memory (the
ability to maintain a representation of intended tasks and execute
them at the appropriate time and place). For instance, VR has
recently been used in conjunction with high-resolution fMRI to
index the degree to which specific goal and sub-goal locations are
represented within hippocampal activity patterns during route
planning, reflecting prospective coding of navigational intentions
(Brown et al., 2016). Additionally, Kalpouzos and Eriksson (2013)
familiarized participants to a VE and subsequently collected
fMRI data while they mentally executed intended tasks within
the imagined VE – a design that reduced variability in neural
representation for environment.

Given that a time-course of fMRI activity can be collected
during virtual navigation, it is possible to examine the different
temporal phases of navigation behavior (Demanuele et al., 2015).
Previous work has examined: planning vs. execution (Xu et al.,
2010), encoding vs. retrieval (Suthana et al., 2011), periods
of object manipulation (Baumann et al., 2003a), and active
vs. guided periods (Baumann et al., 2003b). Persson et al.
(2013) measured hippocampal activity as participants navigated
through a virtual maze and found that males and females show
dissociable recruitment of left and right hippocampus during
active navigation relative to orientation judgments made at
maze end-points. Additionally, events that occur within VR
(e.g., encountering another avatar who dispenses objects) can
be dissociated from their visual scene context by using different
approach routes (Burgess et al., 2001). Even metrics like memory
for heading direction (Baumann and Mattingley, 2010) and
environmental size/complexity (Baumann and Mattingley, 2013)
can be investigated by examining fMRI activity levels at relevant
task time points (e.g., when the participant is facing North;
Figure 2A), without explicitly probing the participant.

In addition to navigation studies, VEs can be employed
to study object-place associative memory. VR can be used
to efficiently change the constellation of objects and their
identities, with respect to locations within the VEs [e.g.,
shuffling object identities (Wong et al., 2014), modulating
their saliency (Buchy et al., 2014), or altering the environment
boundaries (Lee et al., 2016)]. Object-place memory tasks have
also shown that emotion is bound to places by examining
how the co-occurrence of task-irrelevant emotional events
alongside encoding can heighten subsequent retrieval activity
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(Chan et al., 2014) – extending findings that show place cells
remapping once an environment becomes associated with fear
(Moita et al., 2004). VR allows for object-place experiments to be
conducted with high precision, immersion, and repeatability – a
set of capabilities that make it particularly useful for obtaining
diagnostic metrics in clinical populations (e.g., schizophrenia
patients; Hawco et al., 2015).

Performance on VR-based tasks can also serve as a useful
measuring instrument for examining factors outside of the
learning experience that may affect behavior. For instance,
Rauchs et al. (2008) investigated the neurocognitive effects
of sleep deprivation on a series of virtual navigation tests.
Researchers can also examine how fMRI signals measured in
one setting (e.g., during resting fixation) might predict individual
differences in performance on VR-based tasks performed outside
the scanner. For example, Wong et al. (2014) identified
patterns of resting-state activity and functional connectivity
that correlated with participants’ memory for objects that had
been learned in a room-scale VE the day before. In another
study, Wegman and Janzen (2011) scanned participants while
passively viewing a route through a VE to identify brain
regions associated with navigation-based decision points, later
using the functional connectivity profile of those regions during
resting-state to account for individual differences in spatial
memory.

DISCUSSION

While fMRI has served as a powerful tool in human memory
research, it requires participants to be placed in a context that is
far from naturalistic – a potential confound for many memory
studies. The inclusion of VR in fMRI memory investigations
allows researchers to utilize immersive and navigable contexts
for stimulus presentation both inside and outside the scanner
(Figure 1A). Moreover, it affords researchers a medium in which
to conduct experiments that is both replicable and controllable.

Facets unique to VR position it as an indispensable toolkit for
specific types of investigations. For instance, creating invisible
walls that restrict movement, but retain the visibility of distal
cues would not be feasible outside of a VE (Lee et al., 2016).
Work by Bergouignan et al. (2014), which used VR to induce
out-of-body experiences in the scanner while examining the role
of perceiving the world from the perspective of one’s own body
for successful episodic encoding of real-life events, would not
have been possible without the use of VR. The same concept
applies to VR’s ability to “blend” VEs (Steemers et al., 2016)
or shift participants’ perspective within the same VE (Sulpizio
et al., 2016). Additionally, VR has the capacity to even the
playing field in experiments that hinge on the use of imagination
(e.g., Legge et al., 2012): it provides a common virtual space
instead of relying on familiar real-world environments that could
vary across individuals as a function of their pre-experimental
exposure to the environment.

VR technologies can also bolster the ecological validity of
fMRI for researchers and clinicians to obtain objective diagnostic
metrics for patient populations (King et al., 2002; Plancher

et al., 2012; Cogné et al., 2017; van Bennekom et al., 2017).
With HMDs, cross-institutional collaboration can be facilitated
as participants immersed in VR will not be cognizant of the
real-world environmental cues. Such attributes are particularly
advantageous for the examination of disorders that are highly
context-dependent (e.g., post-traumatic stress disorder). For
instance, researchers have utilized VR to induce context-specific
fear-conditioning (Huff et al., 2011; Tröger et al., 2012; Ewald
et al., 2014) and fear extinction (Dunsmoor et al., 2014; Ahs et al.,
2015) – dramatically extending current treatment methods which
often require therapy to occur in a context that is dissimilar from
where the fear was acquired (for review see Bohil et al., 2011;
Maples-Keller et al., 2017). Furthermore, compared to many real-
world tasks, VR-based experimental techniques can be replicated
in shorter time spans.

The utilization of VR in fMRI studies need not be daunting
nor expensive; open-source software such as OpenSimulator1

and equipment found in most scanner suites (Figure 1A), such
as MR-compatible stereoscopic goggles and joysticks/joypads,
make it increasingly accessible. Nonetheless, VR research is
still in its infancy and not without limitations. Given the
visual–vestibular disconnect of most setups, some participants
may experience nausea and be unable to complete the study
(Sharples et al., 2008). However, advances in HMD technology are
already helping to alleviate motion-sickness concerns. Devices
that increase immersion through haptic feedback (e.g., Tesla
Suit) and stationary locomotion (e.g., Omni Treadmill) or setups
that create room-scale environments (e.g., cave automatic virtual
environment; Figure 1A) afford researchers with the ability to
employ encoding paradigms that increasingly resemble “real life”
circumstances, making the neural correlates associated with the
formation and recall of such memories more likely to generalize
to real-world behaviors.
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