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A B S T R A C T

Studies of autobiographical memory retrieval often use photographs to probe participants' memories for past
events. Recent neuroimaging work has shown that viewing photographs depicting events from one's own life
evokes a characteristic pattern of brain activity across a network of frontal, parietal, and medial temporal lobe
regions that can be readily distinguished from brain activity associated with viewing photographs from someone
else's life (Rissman, Chow, Reggente, and Wagner, 2016). However, it is unclear whether the neural signatures
associated with remembering a personally experienced event are distinct from those associated with recognizing
previously encountered photographs of an event. The present experiment used a novel functional magnetic
resonance imaging (fMRI) paradigm to investigate putative differences in brain activity patterns associated with
these distinct expressions of memory retrieval. Eighteen participants wore necklace-mounted digital cameras to
capture events from their everyday lives over the course of three weeks. One week later, participants underwent
fMRI scanning, where on each trial they viewed a sequence of photographs depicting either an event from their
own life or from another participant's life and judged their memory for this event. Importantly, half of the trials
featured photographic sequences that had been shown to participants during a laboratory session administered
the previous day. Multi-voxel pattern analyses assessed the sensitivity of two brain networks of interest—as
identified by a meta-analysis of prior autobiographical and laboratory-based memory retrieval studies—to the
original source of the photographs (own life or other's life) and their experiential history as stimuli (previewed or
non-previewed). The classification analyses revealed a striking dissociation: activity patterns within the auto-
biographical memory network were significantly more diagnostic than those within the laboratory-based network
as to whether photographs depicted one's own personal experience (regardless of whether they had been pre-
viously seen), whereas activity patterns within the laboratory-based memory network were significantly more
diagnostic than those within the autobiographical memory network as to whether photographs had been pre-
viewed (regardless of whether they were from the participant's own life). These results, also apparent in whole-
brain searchlight classifications, provide evidence for dissociable patterns of activation across two putative
memory networks as a function of whether real-world photographs trigger the retrieval of firsthand experiences
or secondhand event knowledge.
Introduction

Photography has become a ubiquitous means for documenting the
events of our lives, and the images captured by cameras provide potent
cues for later triggering recollection of event details. Many cognitive
neuroscientific studies of autobiographical memory have capitalized
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upon this by incorporating photographs as memory probes to assess the
retrieval of personally experienced events (for review, see Chow and
Rissman, 2017; St. Jacques and De Brigard, 2015). However, the mne-
monic processes evoked during the viewing of photographs can be
multifaceted, and it is important for researchers to appreciate the
distinction between memories for the originally experienced event and
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memories for having previously viewed photographs of the event. These
memories may often go hand in hand, but they are theoretically disso-
ciable. For example, a novel photograph can trigger the recollection of
the depicted event or a previously viewed photograph depicting someone
else's life experience can be recognized as a visual image that has been
encountered in one's past. Although neuroimaging investigations of
autobiographical memory have provided valuable insights into the con-
tributions of cortical and medial temporal lobe (MTL) regions in various
aspects of retrieval (Cabeza and St Jacques, 2007; Svoboda et al., 2006),
it remains unclear to what degree the act of remembering an experience
depicted in a photograph can be neurobiologically dissociated from the
recognition of the photograph itself.

This distinction has important implications not only for our under-
standing of the neural correlates of episodic retrieval, but also for po-
tential forensic applications of fMRI as a tool for memory detection
(Meegan, 2008; Peth et al., 2015; Rissman et al., 2010). For instance, if
fMRI were to have any practical utility as a means to assess the presence
or absence of specific memories in a judicial context (Brown andMurphy,
2010; Lacy and Stark, 2013; Meixner, 2015; Schacter and Loftus, 2013),
it would be critical to know whether a crime-relevant probe stimulus was
recognized because it depicted a specific episode from the subject's past,
or whether recognition was elicited simply by virtue of the fact that the
subject had previously heard about or seen a photograph of the stimulus
in question. This distinction between recognition per se and the source of
that recognition is pivotal, and yet underexplored.

The vast majority of extant fMRI studies examining episodic memory
have utilized laboratory-based experiences, rather than those derived
from the real world. Studies of autobiographical and laboratory-based
memories typically differ with regards to the temporal remoteness of
the probed memories and the vividness of retrieval (Gilboa, 2004;
McDermott et al., 2009; Svoboda et al., 2006). Laboratory-based memory
studies generally involve encoding and retrieving a set of homogenous
stimuli with limited personal relevance and context. Furthermore, the
memories used in laboratory-based paradigms are often formed over a
short period of time, with memory performance typically assessed shortly
after encoding. In contrast, autobiographical memory studies often uti-
lize memory probes that are more personally relevant to participants,
such as words or phrases that refer to a specific life event or photographs
of an event. These stimuli may be more likely to trigger the retrieval of
memories entailing the re-experience of various sensory and emotional
qualities (Gilboa, 2004; McDermott et al., 2009). Autobiographical
memory studies often involve the retrieval of remote events: the mem-
ories probed in these paradigms are typically older, with their initial
encoding ranging from weeks to years prior, and the age of the tested
memories may also be less homogenous than laboratory-based studies
(Cabeza and St Jacques, 2007; McDermott et al., 2009). These differences
between autobiographical and laboratory-based tasks may lead to qual-
itative differences in participants' retrieval experiences, potentially
associated with distinct neural correlates.

Several previous fMRI studies have reported notable differences in
the brain regions engaged during the retrieval of autobiographical and
laboratory-encoded memories (e.g., Burianova and Grady, 2007; Cabeza
et al., 2004), and an Activation Likelihood Estimate (ALE) meta-analysis
confirmed that studies of autobiographical memories tend to evoke brain
activation in a different set of regions than studies of laboratory mem-
ories, with only a few small regions exhibiting overlapping effects
(McDermott et al., 2009). Whereas retrieval of autobiographical mem-
ories was consistently associated with the recruitment of areas such as
the bilateral MTL and medial prefrontal cortex (PFC), retrieval of labo-
ratory memories was more consistently associated with recruitment of
areas such as the bilateral middle frontal gyrus, inferior parietal cortex,
and left inferior frontal gyrus. In support of these meta-analytic obser-
vations, recent behavioral findings suggest that performance on standard
laboratory-based memory tasks can be largely uncorrelated with one's
performance on assessments of autobiographical recall, as demonstrated
by recent reports of exceptional individuals exhibiting a phenomenon
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known as “highly superior autobiographical memory,” (LePort et al.,
2012, 2017; Patihis et al., 2013) as well as those exhibiting the converse
phenomenon known as “severely deficient autobiographical memory”
(Palombo et al., 2015). Dissociations like these have led some to propose
that retrieving autobiographical event knowledge is fundamentally
different from other forms of episodic retrieval (Roediger and McDer-
mott, 2013).

One relatively new experimental approach that attempts to increase
the ecological validity of autobiographical memory retrieval studies in-
volves the use of naturalistic stimuli derived from wearable digital
cameras, which unobtrusively capture photographs of participants' lives
(for review, see Chow and Rissman, 2017). Over the past few years,
several studies have used wearable camera technology to investigate
various aspects of memory for everyday occurrences and events (e.g.,
Milton et al., 2011a; Milton et al., 2011b; Nielson et al., 2015; Rissman
et al., 2016; St. Jacques et al., 2011; St. Jacques et al., 2013). However, of
these experiments, few have utilized multivariate techniques such as
multi-voxel pattern analysis (MVPA) (Norman et al., 2006; Tong and
Pratte, 2012) to characterize the neural signatures of retrieval. MVPA can
be used to provide information regarding both the process of autobio-
graphical memory retrieval as well as the content of the retrieved
memories (e.g., Chadwick et al., 2010; Polyn et al., 2005; Rissman et al.,
2016; Rissman et al., 2010; Uncapher et al., 2015) and has proven to be a
particularly useful technique in fMRI experiments using naturalistic
stimuli (Spiers and Maguire, 2007).

Only two extant fMRI experiments have combined MVPA methods
with camera-based experimental paradigms to examine naturalistic
autobiographical memory retrieval. Nielson et al. (2015) assessed hip-
pocampal representations of temporal and spatial information during
real-world autobiographical memory retrieval through the use of
customized smartphones that collected both photographs and GPS data.
Participants wore a smartphone over the course of a month, and the
resulting photographs were later presented during fMRI scanning as cues
to recall specific events. Both the spatial distance and temporal distance
between events could be predicted based on the similarity structure of
neural activity patterns within the left anterior hippocampus during
retrieval. A recent study by Rissman et al. (2016) utilized wearable
digital cameras to assess the whole-brain patterns of neural activation
accompanying the retrieval of real-world event memories. Participants
wore a digital camera device for a period of three weeks, and were
scanned a week later while making mnemonic judgments concerning
brief photographic sequences portraying their own life events or events
from other individuals' lives. Not only could MVPA-based classifiers be
trained to reliably differentiate the neural signatures of novel events that
were correctly rejected from personally experienced events that were
correctly recognized, but classifiers could also distinguish between the
activity patterns associated with varying degrees of perceived novelty,
familiarity, and recollection.

The present fMRI experiment sought to extend the findings of Riss-
man et al. (2016) by developing an experimental protocol that would
allow us to disentangle the neural signatures of event retrieval and
photograph recognition. We adopted a similar wearable camera
approach for collecting photographs of participants' experiences across a
three-week time frame, but we added a critical experimental manipula-
tion in the form of a laboratory session that took place one week after the
camera-wearing period. During this session, participants were exposed,
for the very first time, to a subset of their own photographs as well as to
photographs from another participant's life. The next day, they were
scanned while judging whether each depicted event was from their own
life or someone else's life. Of particular interest was assessing whether
MVPA methods could reliably decode brain activity patterns associated
with the photographic source of an event (whether the photographs
depicted an event from one's own life or someone else’ life) and its
pre-exposure status (whether photographs of the event had been previ-
ously encountered). More importantly, we sought to determine the de-
gree to which the decoding of these mnemonic attributes was driven by
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unique neural signatures. To this end, our analyses focused on querying
the sensitivity of the autobiographical retrieval and laboratory-based
retrieval networks identified by McDermott et al. (2009). Our study is
only the third fMRI study to combine MVPA methodology with wearable
camera technology, and the first to assess differences in the autobio-
graphical retrieval and laboratory-based retrieval networks with such
approaches. We hypothesized that activity patterns within the autobio-
graphical network might be better able to decode photographic source
than those within the laboratory-based network, whereas activity pat-
terns within the laboratory-based networkwould be better able to decode
photographic pre-exposure than those within the autobiographical
network.

Methods

Participants

Eighteen participants (9 females; 18–22 years old) with no prior
history of neurological or psychiatric issues completed the experiment.
Two other individuals initially took part in the experiment, but their
participation was discontinued prior to the fMRI scan session (one due to
loss of interest and one due to non-compliance). All participants were
right-handed native English speakers with normal or corrected-to-normal
vision. Additionally, participants were screened for MRI compatibility
and contraindications. Participants gave written informed consent in
accordance with the Institutional Review Board procedures at the Uni-
versity of California, Los Angeles (UCLA). Participant enrollment was
limited to UCLA undergraduate students in an effort to limit the variance
in the types of life experiences and environmental settings captured by
their wearable digital cameras. Participants consented for their camera's
photographs to be viewed by the experimenters and by other participants
in the experiment. Participants were remunerated with $215 for their
time and effort.

Procedure

Wearable cameras
All participants were provided with a necklace-mounted Autographer

device (OMG Life, Oxford, UK); this small 5-megapixel digital camera
contains electronic sensors that detect variations in the external envi-
ronment, including changes in ambient light and movement. When the
Autographer's sensors are triggered, it automatically takes color still-
photographs (2592� 1936 pixels) using its forward-facing, wide-angle
lens with a 136� field of view. The Autographer does not include a display
screen, so participants were unable to review any of their photographs.
Participants retained complete discretion over when and where their
cameras were actively taking photographs; participants were able to turn
off their Autographer cameras whenever they desired.

Stimuli
Experimental stimuli consisted of image sequences created from the

photographs captured by participants' Autographer cameras. After the
completion of the three-week camera-wearing interval, 40 unique events
per week were identified for each participant. For each unique event,
eight photographs were selected based on their ability to best depict the
temporal progression of that experience. These eight photographs formed
one “event sequence.” The amount of time elapsing between the first and
last photograph of each event sequence was constrained to be no more
than 15min. A total of 120 event sequences were created from photo-
graphs of each participant's life. All event sequences were manually
selected by the same experimenters throughout the study. Event se-
quences were chosen according to a set of predetermined criteria,
delineated prior to the start of the experiment, such that there was an
emphasis on selecting more unique events over generic ones (since all
participants were UCLA students, an effort was made to ensure that the
photographs within each event sequence contained sufficient details so
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that the camera wearer would have a reasonable chance of determining
that the event was from his/her own life). We also attempted to sample a
wide variety of experiences and avoid overrepresentation of specific
activities, individuals, and locations that tended to recur day after day.
When selecting event sequences within a given day, our protocol
enforced a rule that no more than two event sequences could be drawn
from a single activity (e.g., if a participant attended a football game, we
might create two event sequences depicting different aspects of that
experience).

Participants' event sequences were constructed from experiences
throughout each day and contained both indoor and outdoor events. Due
to the limited number of Autographer cameras in our possession and the
time-consuming nature of our stimulus selection procedures, participants
were recruited in a rolling fashion. Although this could raise potential
concerns that participants would be able to differentiate their photo-
graphs from those of another participant based on superficial charac-
teristics like weather conditions and people's clothing choices, we were
fortunate that the year-round temperate climate of Los Angeles and
minimal rainfall led all participants' photographs to appear highly similar
in terms of lighting, weather, and clothing. Minor edits were performed
on some images to ensure that the photographs did not contain visual
cues that could immediately enable self-identification, such as cropping
to remove participants' visible body parts. All stimuli were standardized
to the same dimensions (460� 345 pixels) and presented against a gray
background (1440� 900 pixels) during both the photograph pre-
exposure session and the fMRI scan session.

Experimental phases
This study consisted of three phases: a camera-wearing phase, a

photograph pre-exposure phase, and a fMRI scan phase.
Phase 1: camera wearing. In the first phase of the experiment, partic-

ipants wore Autographer cameras daily over the course of three weeks.
Participants were instructed to wear their camera devices, at their
discretion, for at least 8 h a day to ensure that a sufficient number of
photographs were captured and that these photographs depicted a
reasonably diverse set of life events. Participants made weekly visits to
the laboratory where the experimenters downloaded their photographs.
The cameras were returned to the experimenters after 21 days. The
number of viable photographs per week ranged between 1620 and
10,594 images (median¼ 4332), depending on participants' camera-
wearing habits. Participants were unaware of the goals of our research
study and had no knowledge of how the photographs captured by the
camera would be used in the upcoming experimental task.

Phase 2: photograph pre-exposure. The second phase of the experiment
consisted of the photograph pre-exposure session, which was conducted
in the laboratory one week after the conclusion of the camera-wearing
phase. The purpose of this session was to expose participants to a sub-
set of their own event sequences as well as a subset of another randomly
selected participant's event sequences in order to subsequently measure
the behavioral and neural consequences of this pre-exposure. Partici-
pants were presented with 120 event sequences (60 from their own life
and 60 from another participant's life; evenly sampled from the three
weeks of camera-wearing) in random order, with the constraint that no
more than three sequences in a row were from their own life or another
participant's life. The eight photographs within each event sequence were
shown in the original temporal order in which they had been captured.
For each event sequence, participants were asked to rate the distinc-
tiveness of the depicted event on a 4-point scale. This task was used to
ensure attentive processing and incidental encoding of the stimuli. Par-
ticipants were not explicitly informed as to which event sequences were
derived from their own cameras and which were derived from other
individuals' cameras. Event sequences that appeared during the pre-
exposure phase will be referred to as “Previewed” sequences, whereas
event sequences that did not appear during this phase will be referred to
as “Non-Previewed” sequences.

The trial structure of the pre-exposure session was equated with that
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of the subsequent fMRI scan session as closely as possible. The timing of
each trial was identical. All trials began with the presentation of an 8-
photograph event sequence, where each individual photograph within a
sequence was shown for 0.8 s, with a 0.2-s fixation interval between
successive images. Presentation of the event sequence was followed by a
4-s response period for participants to indicate their distinctiveness rat-
ing and then a 6-s inter-trial interval (ITI) with fixation.

Phase 3: fMRI scanning. The last phase of the experiment occurred one
day after the pre-exposure session was administered. Participants un-
derwent fMRI scanning while viewing and making judgments about 240
event sequences (120 from their own life and 120 from another partici-
pant's life, with 50% of the sequences from each condition previously
encountered during the pre-exposure session). During each trial, an 8-
photograph sequence was presented with the same timing used during
the pre-exposure session (Fig. 1). Participants were required to make two
judgments about each event sequence: (1) a judgment about the source of
the photographs indicating whether the depicted event was captured by
one's own camera (“Self”) or whether it was from another person's life
(“Other”), and (2) a judgment about whether the photographs were
presented in their originally acquired temporal order (“Intact”) or
whether some of the photographs were presented in a temporally
scrambled order (“Scrambled”). The inclusion of temporally scrambled
sequences in this experiment—which comprised 50% of all trials (evenly
distributed across conditions) and involved the rearrangement of the
final four photographs of a sequence—was intended to facilitate an
analysis of temporal order memory and schema-based prediction error,
but this is beyond the scope of the present investigation and will be
featured in a separate report. Thus, for the purposes of the present report,
we have elected to collapse across Intact and Scrambled trials and focus
our analyses on the neural signatures of the two other critical experi-
mental factors of photographic source (Self vs. Other) and pre-exposure
(Previewed vs. Non-Previewed).

Participants were instructed to indicate their judgments by pressing
one of four keys on an MRI compatible button-box using the fingers of
their right hand. The two judgments required on each trial (photographic
source and temporal order) were combined into a single response with
the following options: “Self and Intact,” “Self and Scrambled,” “Other and
Intact,” and “Other and Scrambled.” Although participants were
informed that some trials would feature event sequences that they had
encountered in the laboratory on the previous day (in their original
temporally intact order), they were not asked to make judgments indi-
cating whether or not each trial's event sequence had been pre-exposed.
Over the course of a scanning session, participants viewed all 120 of the
event sequences selected from their own life and all 120 of those selected
from another participant's life; thus, the Self/Other conditions were
matched in terms of the number of event sequences that were selected
from each of the three weeks of the respective wearers' lives.
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Additionally, an equal number of event sequences per week were
randomly assigned to be Previewed/Non-Previewed. This ensures that
both the temporal remoteness of events and the variability of life expe-
riences across time were not confounded with our four experimental
conditions of interest.

fMRI data acquisition

All neuroimaging data were acquired on a Siemens 3.0 T Tim Trio
MRI scanner at the UCLA Staglin IMHRO Center for Cognitive Neuro-
science. Functional volumes were obtained with T2*-weighted whole-
brain echo-planar imaging (EPI) sensitive to blood-oxygen-level-
dependent (BOLD) contrast. Each EPI volume consisted of 35 axial sli-
ces acquired in an interleaved manner (TR ¼ 2000 ms, TE ¼ 27 ms, flip
angle ¼ 75�, FoV ¼ 192 mm, voxel size ¼ 3.0 � 3.0 � 3.5 mm). The
experiment included 10 functional runs, each with 221 vol, where the
first 3 vol of each run were discarded to account for T1 stabilization. A
whole-brain high-resolution anatomical scan (T1-weighted structural
MPRAGE) and a T2-weighted in-plane anatomical scan were also
collected for each participant to aid in spatial registration and normali-
zation. Additionally, a field map image was acquired for each participant
to assist in unwarping procedures for areas susceptible to distortion.

fMRI preprocessing and univariate analysis

Prior to analysis, EPI timeseries data were preprocessed using con-
ventional procedures from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/) including slice time correction, motion correction
with a six-parameter rigid-body realignment procedure, unwarping, co-
registration, segmentation, and normalization to MNI stereotactic
space. Co-registration involved a two-part procedure where the in-plane
anatomical image was registered to the mean functional image and the
MPRAGE was registered to the in-plane anatomical. The MPRAGE was
then segmented into cerebrospinal fluid, white matter, and gray matter.
Nonlinear warping parameters were computed to normalize each par-
ticipant's grey matter image to a grey matter template in MNI space, and
these warping parameters were applied to all functional images, which
were resampled into 3-mm isotropic voxels. Finally, potential artifacts in
the EPI data were mitigated using the GLMdenoise procedure ( https://
www.nitrc.org/projects/glmdenoise/); Kay et al., 2013). This denoising
procedure begins by identifying task-unrelated brain voxels from a uni-
variate general linear model (GLM), and then uses the timeseries of these
“noise pool” voxels to develop a set of nuisance regressors, which we then
regressed out of the timeseries of all voxels to generate a denoised
timeseries. To ensure independence of data across runs, a 5-fold
cross-validation procedure was performed where the 10 runs of the study
were split into 5 pairs and the GLMdenoise cross-validation procedure
Fig. 1. (A) An Autographer digital camera
was worn by participants for 3 weeks to
automically capture photographs of their
life events. (B) Schematic of an experi-
mental trial from the fMRI session. In each
trial, the 8 photographs of an event
sequence were presented for 0.8 s each,
separated by 0.2-s fixation intervals. Pre-
sentation of the event sequence was fol-
lowed by a 4-s response period. A 6-s inter-
trial interval (ITI) of resting fixation sepa-
rated trials from one another. (C) An
example of an event sequence that might be
presented during one trial.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.nitrc.org/projects/glmdenoise/
https://www.nitrc.org/projects/glmdenoise/
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was implemented within each of the pairs.

Networks of interest

Networks of interest were obtained from the McDermott et al. (2009)
ALE meta-analysis. Their meta-analysis identified one set of brain regions
consistently associated with autobiographical memory, derived from
peak coordinates reported in 14 prior fMRI studies in which activation
associated with the retrieval of personal events (typically cued with
words, sentences, or pictures) was compared to that of a control task.
They also identified another largely non-overlapping set of regions
associated with the retrieval of laboratory-based memories, derived from
peak coordinates reported in 18 prior fMRI studies in which participants
made recognition judgments on either word, picture, object, or face
stimuli that had been studied in a laboratory setting (the activation maps
in these studies were typically derived from contrasts of hits> correct
rejections). The “Autobiographical Network” included areas such as the
medial PFC, posterior cingulate/retrosplenial cortex, angular gyrus, and
bilateral MTL (hippocampus/parahippocampal gyri). The “Laborator-
y-based Network” included areas such as the left inferior frontal gyrus,
bilateral middle frontal gyri, bilateral frontal operculum, precuneus,
bilateral inferior parietal cortex, posterior cingulate cortex, and left MTL
(posterior parahippocampal gyrus). Overlap between the Autobio-
graphical Network and the Laboratory-based Network was very limit-
ed—indeed, the only shared regions were a few small clusters in the
lateral inferior frontal gyrus, posterior cingulate cortex, and thalamus.

The FDR-corrected ALE maps were obtained from McDermott et al.
(2009) and resampled to 3-mm3 voxel resolution to create two networks
of interest for use as masks in the following analyses (Fig. 2). The
Autobiographical Network (originally 1526 voxels) and the Laborator-
y-based Network (originally 2580 voxels) were then modified to ensure
coverage in all of our participants, to exclude all overlapping voxels (94
voxels), and to equate their total size. The latter was done to ensure that
any differences in classification performance between the two networks
could not be attributable to a greater number of features (i.e., voxels) in
one network. Given the smaller size of the resulting Autobiographical
Network mask (1432 voxels), the most significant 1432 voxels in the
Laboratory-based Network were retained, and the ALE values of the
voxels within each network were binarized to create masks. These masks,
along with other additional results, have been made publically available
(https://neurovault.org/collections/3412/) on Neurovault (Gorgolewski
et al., 2015).

Multi-voxel pattern analysis (MVPA)

MVPA was applied within each network of interest to evaluate the
sensitivity of the BOLD activation patterns to photographic source (Self
vs. Other) and pre-exposure status (Previewed vs. Non-Previewed).
MVPA was conducted in MATLAB with the Princeton MVPA Toolbox
(http://code.google.com/p/princeton-mvpa-toolbox) and custom code.
The unsmoothed timeseries data of each voxel within each run was first
Fig. 2. Networks of interest used for our multi-voxel pattern analyses. These network
autobiographical memory (red regions) and laboratory-based memory (blue region
networks were equated for voxel size, with only the top 1432 voxels included in ea
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detrended to eliminate both linear and quadratic trends, high-pass
filtered (128-s period), and then z-scored. No feature selection was
implemented (i.e., all voxels with a given network-of-interest mask were
used as features). For each trial, BOLD signal was averaged across the 4th,
5th, 6th, and 7th post-onset volumes (TRs), which correspond to 6–14 s
after event sequence onset and thus capture the window of peak acti-
vation associated with stimulus processing and evaluation. In order to
diminish the likelihood that the classifier's predictions could be influ-
enced by activity fluctuations that scale with subtle, yet consistent,
response time (RT) differences between conditions, we removed the ef-
fects of RT from each voxel's activity on a trial-by-trial basis with linear
regression and retained the residuals for our analyses (Todd et al., 2013).
The resulting single trial activity patterns were then z-scored once more
(across trials) and used to train a regularized logistic regression (RLR)
algorithm to classify between trials of two different conditions. We have
found this classification algorithm to perform well in similar experi-
mental paradigms (Rissman et al., 2010, 2016; Uncapher et al., 2015).
This algorithm included a ridge penalty term as a Gaussian prior on the
feature weights; following Rissman et al. (2016), this penalty parameter
was set to a fixed value of 100 for all classifications.

Within-subjects pattern classification was run using a 5-fold cross-
validation procedure, with each fold comprised of the data from two
runs (corresponding to the same two-run subsets used for the
GLMdenoise procedure). Within each fold, if the number of trials from
each condition were unequal, the trial counts were balanced by randomly
discarding trials from the more plentiful condition. Trials from four of the
five folds (eight of the original 10 runs) were used to train the classifier,
and its performance was then assessed by having the classifier predict the
condition labels of each trial from the held-out fold (the remaining pair of
runs). These probabilistic predictions were tabulated across all testing
trials and ranked to allow the calculation of receiver operating charac-
teristic (ROC) curves, reflecting the relationship between the classifier's
true positive and false positive rate across a range of potential decision
boundaries. Our primary classification performance metric was the area
under the curve (AUC). This measure, widely used in the machine
learning literature and considered more informative than overall accu-
racy (Bradley, 1997), can be interpreted as the probability that a
randomly chosenmember of one class has a smaller estimated probability
of belonging to the other class than has a randomly chosen member of the
other class. In other words, AUC indexes the mean accuracy with which a
randomly chosen pair of Class A and Class B trials could be assigned to
their correct class (0.5 is chance performance; 1.0 is perfect perfor-
mance). The ROC curves reflecting classifier performance within the
Autobiographical and Laboratory-based Networks, from which the AUCs
are derived, can be seen in Supplementary Fig. 1. Because our trial count
balancing procedure involved discarding random subsets of trials, we
repeated the entire 5-fold cross validation procedure 20 times for each
participant and saved the mean AUC. Group-level analyses were imple-
mented as one-sample, two-tailed t-tests comparing the AUC results from
a given classification against a theoretical null hypothesis value of 0.5.
We adopted a significance threshold of t(17)¼ 2.458 (p< 0.025,
s were derived from the McDermott et al. (2009) meta-analysis of fMRI studies of
s). Prior to analyses, areas of overlap (magenta regions) were excluded, and
ch network of interest.

https://neurovault.org/collections/3412/
http://code.google.com/p/princeton-mvpa-toolbox
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two-tailed) for these results in order to apply Bonferroni correction ac-
counting for two tests (i.e., the fact that we ran classifications on two
different networks). An additional set of analyses using shuffled class
labels confirmed that the empirical chance-level indeed converged on
AUC¼ 0.5, indicating that no insidious biases were present in our clas-
sification workflow. For each classification, a paired-samples, two-tailed
t-test was then run to compare the decoding performance resulting from
application of MVPA within the two networks of interest.

Although our primary analyses focused on the comparison of classi-
fication performance for our two meta-analytically defined networks-of-
interest, we also conducted exploratory whole-brain searchlight mapping
analyses (Kriegeskorte et al., 2006) to provide a more complete portrait
of the anatomical distribution of regions sensitive to photographic source
and pre-exposure. The searchlight analyses were implemented by
training and testing a series of RLR classifiers, each using the voxels
within a small spherical mask (radius¼ 3 voxels; maximum vol-
ume¼ 123 voxels). This process was repeated with spheres centered at
all brain voxels within an 80,126-voxel whole-brain mask. Each classi-
fication was performed using the same 5-fold cross-validation procedures
described above (including linearly regressing out the response times);
the only difference was that instead of re-running each classification 20
times with different balanced trial selections, each classification was run
once (due to the computationally-intensive nature of this analysis).
Group-level t-maps were created by comparing the mean AUC across
subjects to the null hypothesis of 0.5 for each voxel. The resulting maps
were corrected for multiple comparisons using AFNI's 3dClustSim (Cox,
1996), which employs Monte Carlo simulations to calculate the cluster
size required to achieve a whole-brain corrected threshold of p< 0.05.
Specifically, our correction procedure utilized one of the more recent
3dClustSim approaches.1 This procedure requires an estimate of the
empirical smoothness of the data under null hypothesis conditions,
which we derived by re-running the searchlight classifications 20 times
using shuffled class labels and averaging the resulting maps; smoothness
was computed using AFNI's 3dFWHMx, resulting in an estimated effec-
tive smoothness of FWHM¼ 16.15mm. Using this method, we deter-
mined that the combination of a voxel height threshold of p< 0.005
(one-tailed) and a minimum cluster size of 89 voxels yielded appropriate
correction at p< 0.05.

Results

Behavioral results

On average, participants were 89.0% correct in indicating the
photographic source (Self vs. Other) of the depicted event sequences,
which was well above chance (t(17)¼ 24.506, p< 10�13). Although the
experimental task did not prompt subjects to indicate the pre-exposure
status of events, participants' performance can be assessed based on
whether the photographs of an event had been previously encountered
during Phase 2 (Previewed) or whether they were being encountered for
the first time (Non-Previewed); Fig. 3A. A repeated measures ANOVA
conducted on photographic source judgment accuracy revealed no main
effect of photographic source (Self events: 89.8%, Other events: 88.1%;
F(1,17) ¼ 0.744, p¼ 0.401), but there was a main effect of pre-exposure
(Previewed events: 90.9%, Non-Previewed events: 87.0%;
F(1,17)¼ 19.348, p< 10�3). There was also a significant interaction be-
tween photographic source and pre-exposure (F(1,17)¼ 22.624, p< 10�3)
such that Self events were more successfully labeled as “Self” when they
had been Previewed (93.7%) than when they were Non-Previewed
(85.9%) (p< 10�4), whereas Other events were equally likely to be
1 This 3dClustSim method involved deriving the ACF parameters from a
mixed-model calculation such that “a*exp(-r*r/(2*b*b))þ(1-a)*exp(-r/c)”
where a, b, and c indicate three shape variables (Cox, 1996). Our ACF param-
eters were 0.33, 7.12, and 11.2.
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successfully labeled as “Other” when they had been Previewed (88.1%)
as when they were Non-Previewed (88.1%) (p¼ 0.934).

We also analyzed the response times of trials with correct photo-
graphic source judgments; Fig. 3B. A repeatedmeasures ANOVA revealed
no main effect of photographic source (Self events: 2.112 s, Other events:
2.094 s; F(1,17)¼ 0.231, p¼ 0.637). However, there was a main effect of
pre-exposure (Previewed events: 2.065 s, Non-Previewed events: 2.141 s;
F(1,17)¼ 11.235, p¼ 0.004). There was also a significant interaction
(F(1,17) ¼ 14.026, p¼ 0.002), such that Self events more rapidly labeled
as “Self” when they had been Previewed (2.040 s) than when they were
Non-Previewed (2.183 s) (p< 10�3), whereas Other events had compa-
rable RTs whether they had been Previewed (2.091 s) or Non-Previewed
(2.098 s) (p¼ 0.784).

MVPA results

We assessed the performance of separate classifier models trained and
tested using the voxel activity patterns within either the Autobiograph-
ical Network or within the Laboratory-based Network. Only trials for
which participants indicated the correct photographic source (Self/Other
status) of the event were used in the classification analyses. While ana-
lyses of the incorrectly performed trials (e.g., false memories and
forgotten experiences) could potentially be of interest, participants'
generally high accuracy levels resulted in low trial counts for these
conditions, rendering classification too underpowered. Our MVPA ana-
lyses first examined the ability of each network to decode the photo-
graphic source of individual events (i.e., to discriminate Self events from
Other events); Fig. 4A. This classification was highly accurate for both
the Autobiographical Network (mean AUC¼ 0.843; t(17)¼ 22.201,
p< 10�13) and the Laboratory-based Network (mean AUC¼ 0.793;
t(17)¼ 13.435, p< 10�9); for group-averaged classification importance
maps (Johnson et al., 2009) depicting which regions within each network
provided maximally diagnostic signals for discriminating Self vs. Other
events, see Supplementary Figs. 2A–B. A direct comparison between the
classification performance of each network revealed that the Autobio-
graphical Network outperformed the Laboratory-based Network
(t(17)¼ 6.594, p< 10�5). This robust decoding of photographic source
held up when we separately analyzed trials of only Previewed events or
only Non-Previewed events, despite an approximately 50% reduction in
the dataset for each case. When the analysis was restricted to Previewed
events, classification of Self/Other status remained well above chance in
both the Autobiographical Network (mean AUC¼ 0.798; t(17)¼ 16.683,
p< 10�11) and the Laboratory-based Network (mean AUC¼ 0.746;
t(17)¼ 9.828, p< 10�7), with the Autobiographical Network showing
significantly better performance (t(17)¼ 4.174, p< 10�3). When the
analysis was restricted to Non-Previewed events, classification of Self/-
Other status remained well above chance in both the Autobiographical
Network (mean AUC¼ 0.821; t(17)¼ 16.882, p< 10�11) and the
Laboratory-based Network (mean AUC¼ 0.788; t(17)¼ 11.174,
p< 10�8), with the Autobiographical Network again showing signifi-
cantly better performance (t(17)¼ 2.124, p¼ 0.049). Finally, we exam-
ined whether the Self/Other status of events could be decoded even when
never-before-seen photographs of one's own life events (i.e., Self,
Non-Previewed) were compared to previously seen photographs of
someone else's life events (i.e., Other, Previewed). This analysis pits
memories for firsthand experiences of an event against secondhand
knowledge of someone else's experiences, allowing a critical test of
whether a brain-based classifier is capable of distinguishing between
these two forms of event recognition. As with the prior analyses, this
classification was found to be highly accurate in both the Autobio-
graphical Network (mean AUC¼ 0.817; t(17)¼ 14.525, p< 10�10) and
the Laboratory-based Network (mean AUC¼ 0.773; t(17)¼ 9.577,
p< 10�7), with the former network outperforming the latter
(t(17)¼ 4.299, p< 10�3).

We next examined the ability of brain activity patterns within each
network to decode the pre-exposure status of individual events (Fig. 4B).



Fig. 3. Behavioral results. (A) Mean accuracy of photographic source judgments and (B) mean response times to correctly performed trials are shown for the indi-
vidual photographic source and pre-exposure conditions. Error bars represent standard error.
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We anticipated that this distinction might be harder to decode, given that
photograph pre-exposure was not a task-relevant variable (i.e., partici-
pants were not explicitly asked to judge whether photographs were
Previewed or Non-Previewed). This was indeed the case for the Auto-
biographical Network, where classification of Previewed vs. Non-
Previewed trials was no better than chance (mean AUC¼ 0.518;
t(17)¼ 1.524, p¼ 0.146). However, activity patterns within the
Laboratory-based Network showed pre-exposure decoding performance
that was reliably above-chance (mean AUC¼ 0.585; t(17)¼ 6.379,
p< 10�5). Direct comparison of classification performance in the two
networks showed a significant advantage for the Laboratory-based
Network (t(17)¼ 5.417, p< 10�4). A group-averaged classification
importance map depicting which regions within the Laboratory-based
Network tended to be most diagnostic for discriminating Previewed vs.
Non-Previewed events is provided in Supplementary Fig. 2C.

We next repeated the Previewed vs. Non-Previewed classifications
separately for Self events and for Other events. When restricting the
analysis to Self events, classification performance within the Autobio-
graphical Network improved slightly but did not achieve Bonferroni-
corrected significance relative to chance (mean AUC¼ 0.543;
t(17)¼ 2.189, p¼ 0.043). Classification within the Laboratory-based
Network remained above chance (mean AUC¼ 0.599; t(17)¼ 6.644,
p< 10�5) and was significantly better than that of the Autobiographical
Network (t(17)¼ 2.813, p¼ 0.012). When restricting the analysis to Other
events, classification within the Autobiographical Network was at chance
(mean AUC¼ 0.510; t(17)¼ 0.680, p¼ 0.506). Classification within the
Laboratory-based Network (mean AUC¼ 0.559) was significantly better
than that of the Autobiographical Network (t(17)¼ 2.242, p¼ 0.039) and
was also significantly better than chance (t(17)¼ 2.481, p¼ 0.024).

These findings suggest that the Autobiographical and Laboratory-
based Networks are preferentially sensitive to different mnemonic
characteristics, with the Autobiographical Network being better than the
Laboratory-based Network at decoding whether a depicted event is from
one's own life and the Laboratory-based Network being better than the
Autobiographical Network at decoding whether the photographs of an
event have been previously encountered. A repeated measures ANOVA
confirmed this interaction (F(1,17)¼ 81.685, p< 10�7; Fig. 5). Impor-
tantly, this interaction remained significant when the classification an-
alyses were re-run using only the data from the temporally intact event
sequences (F(1,17)¼ 19.346, p< 10�3). Moreover, paired-sample, two-
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tailed t-tests revealed that Self vs. Other decoding accuracy was not
significantly influenced by photograph pre-exposure, nor was Previewed
vs. Non-Previewed decoding accuracy influenced by personal relevance
(when Bonferroni correction was applied for two comparisons within
each network; critical alpha level: p< 0.025, two-tailed). Within the
Autobiographical Network, the difference between Self, Previewed vs.
Self, Non-Previewed and Other, Previewed vs. Other, Non-Previewed
trials was not significant (t(17)¼ 1.210, p¼ 0.243), nor was the differ-
ence between Self, Non-Previewed vs. Other, Non-Previewed and Self,
Previewed vs. Other, Previewed (t(17)¼ 2.086, p¼ 0.052). Similarly,
within the Laboratory-based Network, the difference between Self, Pre-
viewed vs. Self, Non-Previewed and Other, Previewed vs. Other, Non-
Previewed was not significant (t(17)¼ 1.536, p¼ 0.143), nor was the
difference between Self, Non-Previewed vs. Other, Non-Previewed and
Self, Previewed vs. Other, Previewed (t(17)¼ 2.043, p¼ 0.057).

Even though our two networks of interest do not contain many re-
gions typically associated with motor responses, we sought to assuage
potential concerns that our results could be influenced by a confound
between our memory conditions and the associated button-mappings
(note that this is only an issue for the Self/Other distinction; since the
Previewed/Non-Previewed distinction was not task-relevant, the
decoding of pre-exposure status cannot be influenced by response de-
mands). To this end, we explicitly excluded any portions of our two
network masks that overlapped with any motor-related anatomical re-
gions (precentral gyrus, postcentral gyrus, supplementary motor area,
and cerebellum) as defined by the Automated Anatomical Labeling atlas
(Tzourio-Mazoyer et al., 2002), and we then reran the classifications of
photographic source and pre-exposure status. For the Self vs. Other
classification, the Autobiographical Network (mean AUC¼ 0.848;
t(17)¼ 24.001, p< 10�13) continued to show significantly greater
decoding performance (t(17)¼ 5.713, p< 10�4) than the
Laboratory-based Network (mean AUC¼ 0.798; t(17)¼ 13.937,
p< 10�10). Likewise, for the Previewed vs. Non-Previewed classification,
the Laboratory-based Network (mean AUC¼ 0.580; t(17)¼ 6.584,
p< 10�5) continued to demonstrate significantly greater decoding per-
formance (t(17)¼ 4.762, p< 10�3) than the Autobiographical Network
(mean AUC¼ 0.520; t(17)¼ 1.869, p¼ 0.079). Thus, our core MVPA ef-
fects remained significant regardless of whether voxels from motor re-
gions were included in our networks of interest, indicating that these
findings are not likely dependent upon motor contributions.



Fig. 4. Classification performance within the Autobiographical Network (red bars) and the Laboratory-based Network (blue bars). (A) Decoding of photographic
source (Self vs. Other) across all trials and for analyses restricted to subsets of trials based on their pre-exposure status. (B) Decoding of pre-exposure status (Previewed
vs. Non-Previewed) across all trials and for analyses restricted to subsets of trials based on their photographic source. The bars depict mean AUC across subjects, and
the markers depict the AUC values of individual subjects. The dashed line indicates chance-level performance.
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As a further indication that our findings are not likely driven by motor
contributions, we ran a separate set of analyses in which we trained and
tested classifiers using the data from individual post-onset time points.
We found that decoding of Self vs. Other status (the task-relevant
dimension) achieved significance in both networks as early as the 3rd
TR. This represents BOLD data acquired 4–6 s into the trial, which re-
flects neural activity evoked during the first few seconds of stimulus
viewing and likely well before participants had prepared a response;
Supplementary Fig. 3. Decoding performance levels across the two net-
works did not diverge until later in the timecourse (i.e., the 6th and 7th
TRs) when classification within the Autobiographical Network began to
show a significant advantage. This is likely because autobiographical
retrieval processes (e.g., memory search, mental time travel, contextual
reinstatement, etc.) supported by the Autobiographical Network take
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several seconds to emerge and are aided by the additional context cues
provided by each successively presented image in a sequence. Although
BOLD data from these later time points could potentially be influenced by
response demands, it is notable that the Autobiographical Network
demonstrated better classification than the Laboratory-based Network,
despite the fact that the latter network contains more brain regions that
have been associated with decision and response-related processes.

Many MVPA studies incorporating comparisons of classifier perfor-
mance utilize parametric statistical tests such as t-tests. However, there
have been suggestions that nonparametric statistical tests are more
appropriate for classification-based analyses (e.g., Pereira et al., 2009), in
part as such tests require fewer statistical assumptions. To ensure that our
set of MVPA results were robust and did not depend on potentially
problematic statistical assumptions, comparisons of classification



Fig. 5. The interaction between the Autobiographical Network and the Laboratory-based Network's ability to classify photographic source and pre-exposure status.
Relative to the Laboratory-based Network, the Autobiographical Network demonstrated better decoding of photographic source (Self vs. Other), but poorer decoding
of pre-exposure status (Previewed vs. Non-Previewed).
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performance across photographic source and pre-exposure status were
assessed again using two-tailed, nonparametric paired Wilcoxon signed
ranks exact tests conducted with SPSS. When assessing decoding per-
formance regarding the photographic source of events, classification
within the Autobiographical Network continued to be significantly better
than the Laboratory-based Network for: Self vs. Other events (p< 10�5);
Self, Non-Previewed vs. Other, Previewed events (p< 10�3); and Self,
Previewed vs. Other, Previewed events (p<10-3). In comparison, classi-
fication within the Laboratory-based Network continued to be signifi-
cantly better than the Autobiographical Network for: Previewed vs.
Non-Previewed events (p< 10�4); Self, Previewed vs. Self,
Non-Previewed events (p¼ 0.003); and Other, Previewed vs. Other,
Non-Previewed events (p¼ 0.038). As such, all of our core classification
results remained unchanged, with the exception of decoding perfor-
mance for Self, Non-Previewed events vs. Other, Non-Previewed events
(p¼ 0.054), which although strongly trending with the Autobiographical
Network outperforming the Laboratory-based Network, narrowly failed
to achieve significance.

While our network-based classification analyses demonstrated a clear
dissociation, presumably reflecting the differential contributions of these
two networks to memory retrieval, we next used whole-brain searchlight
analyses to evaluate whether the anatomical distribution of decoding
effects would roughly adhere to these networks (Fig. 6). As with the
network-based analyses, group-level searchlight maps revealed that
decoding of photographic source (Self vs. Other) was much more robust
than decoding of pre-exposure status (Previewed vs. Non-Previewed).
This was true throughout much of the brain, and indeed no regions
showed significantly greater decoding performance for pre-exposure
than photographic source. That Self/Other status was more readily
decodable is not surprising, given that this distinction was task-relevant
to participants and highly salient. The more interesting question pertains
to the relative anatomical distribution of peak decoding performance.
The strongest effects for the Self vs. Other classification were observed in
regions that overlapped heavily with the Autobiographical Network,
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including the ventral and posterior aspect of lateral parietal cortex
(bilaterally, but with preferential effects in the left hemisphere), medial
parietal cortex (including posterior cingulate and retrosplenial cortex),
anterior ventromedial PFC, and regions of the MTL (including para-
hippocampal cortex). We note that the robust classification performance
observed in left dorsal motor cortex is likely linked to participants' use of
their right hand to make different finger presses for Self and Other trials.
In contrast, regions exhibiting significant decoding of Previewed/Non-
Previewed status showed notable overlap with the regions of the
Laboratory-based Network, including prominent involvement of the left
lateral PFC and bilateral posterior parietal cortex (including regions
concentrated along the lateral bank of the intraparietal sulcus). Peak
searchlight effects within regions of the two networks are listed in
Table 1, and the maps are publically accessible on Neurovault (https://
neurovault.org/collections/3412/). Interestingly, several of the regions
that the McDermott et al. (2009) meta-analysis had identified as being
associated with both autobiographical and laboratory-based retrieval
(i.e., the regions depicted in magenta in Fig. 2B, which were excluded
from our networks-of-interest analyses) showed significant decoding of
both photographic source and pre-exposure status in our searchlight
analyses.

To better quantify the differences in classification performance, the
number of significant voxels with accuracy values corresponding to
p< 0.05 were calculated for each participant's searchlight results (based
on comparison of each searchlight's observed classification accuracy
relative to the binomial distribution null-hypothesis) and compared
across the two networks. The difference in voxel numbers was evaluated
with a paired-samples, two-tailed t-test that was Bonferroni corrected for
two comparisons (critical alpha level: p< 0.025). For decoding of Self vs.
Other trials, the Autobiographical Network (mean number of vox-
els¼ 1008.3; 70.4% of the network) contained a larger number of sig-
nificant voxels (t(17)¼ 3.543, p¼ 0.003) in comparison with the
Laboratory-based Network (mean number of voxels¼ 878.1; 61.3% of
the network). In contrast, for the decoding of Previewed vs. Non-
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Fig. 6. Group-averaged searchlight maps for decoding
of photographic source (top) and pre-exposure status
(bottom). Only regions achieving whole-brain corrected
significance at p< 0.05 are shown. The color intensity
of a given voxel indicates the mean decoding perfor-
mance (AUC) of a classifier trained and tested using
activity patterns localized to a 3-voxel radius sphere
centered around that voxel. For visualization purposes,
the AUC values associated with the upper-bound of the
color scale differs between the two classification maps
in order to showcase the dynamic range as well as the
peak magnitudes of the respective effects.
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Previewed trials, the Laboratory-based Network (mean number of vox-
els¼ 266.7; 18.6% of the network) contained a larger number of signif-
icant voxels (t(17)¼ 2.912, p¼ 0.010) than the Autobiographical
Network (mean number of voxels¼ 173.7; 12.1% of the network). These
findings were significant even when accounting for the total number of
significant searchlight voxels in each participant's whole brain map. The
Autobiographical Network still contained a greater proportion of signif-
icant voxels than the Laboratory-based Network for the photographic
source classification (t(17)¼ 3.042, p¼ 0.007) and the Laboratory-based
Network still contained a greater proportion of significant voxels than
the Autobiographical Network for the pre-exposure status classification
(t(17)¼ 3.294, p¼ 0.004). Moreover, a repeated measures ANOVA
revealed an interaction between the number of significant voxels in each
network for the photographic source and pre-exposure status searchlight
classifications (F(1,17)¼ 26.216, p< 10�4). These results corroborate our
findings that the Autobiographical and Laboratory-based Networks are
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differentially sensitive to photographic source and pre-exposure status.
This difference between classification performance was also apparent

when examining the mean AUC of voxels within the Autobiographical
Network and the Laboratory-based Network for each participant's indi-
vidual searchlight results with regards to the decoding of photographic
source and pre-exposure status. The decoding performance of the two
networks was assessed with a paired-samples, two-tailed t-test with the
critical alpha level Bonferroni corrected for two comparisons. Across the
photographic source decoding performance for all participants, the mean
AUC of the searchlight voxels in the Autobiographical Network (mean
AUC¼ 0.650) was greater than that of the Laboratory-based Network
(mean AUC¼ 0.622), and this difference was significant (t(17)¼ 4.622,
p< 10�3). For the pre-exposure status decoding performance, the mean
AUC of the searchlight voxels in the Laboratory Network (mean
AUC¼ 0.525) was significantly greater (t(17)¼ 4.133, p<10-3) than that
of the Autobiographical Network (mean AUC¼ 0.508). These results



Table 1
Regions of peak decoding performance within the Autobiographical Network (Auto) and the Laboratory-based Network (Lab) for the group-level searchlight classi-
fications of photographic source (Self vs. Other) and pre-exposure status (Previewed vs. Non-Previewed). MNI coordinates and Brodmann Area (BA) are listed for each
peak, along with the corresponding AUC and t-value. Negative X coordinates indicate left hemisphere regions.

Classification Region BA Peak Network

X Y Z AUC t-value

Self vs. Other Cingulate Gyrus 31 �3 �60 27 0.790 17.268 Auto
Middle Temporal Gyrus 39 �48 �63 18 0.741 11.445 Auto
Cingulate Gyrus 24 0 9 36 0.647 10.632 Auto
Middle Temporal Gyrus 39 48 �66 18 0.728 9.406 Auto
Medial Orbitofrontal Cortex 10 �3 48 �6 0.666 9.067 Auto
Fusiform Gyrus 37 �33 �42 �18 0.689 7.436 Auto
Fusiform Gyrus 37 27 �39 �18 0.668 7.186 Auto
Thalamus – 3 �12 3 0.610 6.858 Auto
Superior Frontal Gyrus 10 �15 54 21 0.585 4.159 Auto
Middle Frontal Gyrus 9 �48 15 30 0.618 7.026 Lab
Cingulate Gyrus 32 �3 24 33 0.593 6.734 Lab
Inferior Parietal Lobule 40 39 �54 45 0.655 5.483 Lab

Previewed vs. Non-Previewed Calcarine Fissure 31 0 �69 18 0.555 4.148 Auto
Inferior Parietal Lobule 19 �33 �75 39 0.557 5.782 Lab
Supramarginal Gyrus 40 �54 �48 30 0.556 5.266 Lab
Inferior Parietal Lobule 40 45 �51 39 0.548 4.663 Lab
Middle Frontal Gyrus 9 �45 9 30 0.560 4.290 Lab
Inferior Frontal Gyrus 45 �51 21 15 0.550 3.435 Lab
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remained significant even when analyses were restricted to only
searchlight voxels with AUC values in the top 50% of each participant's
whole-brain searchlight map. The Autobiographical Network (mean
AUC¼ 0.725) demonstrated better mean classification performance of
photographic source (t(17)¼ 5.324, p< 10�4) than the Laboratory-based
Network (mean AUC¼ 0.692). In comparison, the Laboratory-based
Network (mean AUC¼ 0.569) showed significantly better mean decod-
ing of pre-exposure status (t(17)¼ 3.769, p¼ 0.002) than the Autobio-
graphical Network (mean AUC¼ 0.552). A repeated measures ANOVA
demonstrated an interaction between the two networks when decoding
photographic source and pre-exposure status (F(1,17)¼ 36.345,
p< 10�4). Thus, our searchlight findings—whether summarized by
counting significant voxels or averaging classification performance
across voxels—indicate that the Autobiographical and Laboratory-based
Networks differ in terms of their sensitivity to whether events are from an
individual's own life or whether photographs have been previously
encountered.

Overall, even though the searchlight mapping procedure was not
confined to the regions that comprised the networks used in our core
MVPA analyses, we found that decoding of the photographic source and
pre-exposure status of events was predominately associated with regions
of the Autobiographical Network and the Laboratory-based Network
respectively. Despite the strong convergence across analytic approaches,
we acknowledge that the peak searchlight effects did not map perfectly
onto the boundaries of the two networks, nor was the dissociation ab-
solute. Nonetheless, these findings suggest that the brain regions whose
activity patterns most strongly code for retrieval of self-relevant life ex-
periences are largely distinct from those that code for one's experiential
history with visual stimuli such as photographs.

Discussion

This fMRI experiment utilized wearable digital cameras to assess real-
world autobiographical memory retrieval with MVPA methods. Impor-
tantly, this approach increased ecological validity by allowing the
incorporation of participants' daily life events as retrieval cues without
the need for explicit encoding of these autobiographical experiences. The
experimental paradigm consisted of participants wearing a camera de-
vice for three weeks to automatically photograph a wide variety of their
life events. Participants then returned to the laboratory a week later
where they were exposed to a subset of photographic event sequences
from their lives and the lives of other individuals. Participants were
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scanned the following day while making mnemonic judgments about
event sequences drawn from their own lives and from the lives of other
participants, half of which had been pre-exposed. The critical question
was whether distributed fMRI activity patterns within two putatively
distinct brain networks—identified via meta-analysis as preferentially
associated with the retrieval of autobiographical and laboratory-based
memories—would show differential sensitivity to the source of the
event photographs (i.e., whether or not they were from one's life) and
their pre-exposure status (i.e., whether or not the photographs them-
selves had been previewed the day before the scan). To this end, we ran a
series of MVPA classifications on fMRI data from the so-called Autobio-
graphical Network and Laboratory-based Network (McDermott et al.,
2009), after matching these networks in size and removing all over-
lapping regions. Our analyses revealed a striking dissociation in the de-
gree to which each network was sensitive to these orthogonal dimensions
of retrieval: the Autobiographical Network, which included regions such
as the bilateral MTL and medial PFC, was better at decoding the photo-
graphic source of a given event than the Laboratory-based Network,
whereas the Laboratory-based Network, which consisted of regions such
as the left lateral prefrontal and posterior parietal cortex, was more ac-
curate than the Autobiographical Network at decoding whether photo-
graphs of an event had been previously encountered. These effects were
also apparent in unconstrained whole-brain searchlight analyses, which
found that the peak decoding effects for photographic source and
pre-exposure status were located in regions roughly approximating the
two networks.

Remarkably, the activation patterns associated with photograph pre-
exposure could be reliably decoded even though participants were not
explicitly instructed to evaluate whether photographs of events were
recognized or novel. The ability to classify between Previewed and Non-
Previewed events was found exclusively within the Laboratory-based
Network; activity patterns within the Autobiographical Network were
not sensitive to this distinction. The Laboratory-based Network's
advantage over the Autobiographical Network for pre-exposure decoding
could be found even when the analysis was re-run using only trials
depicting events from the participant's own life, or when it was run using
only events from someone else's life. As such, this shows that the neural
signatures associated with the recognition of event photographs
(whether explicitly noticed by participants or implicitly processed) are
dissociable from those associated with the determination of whether the
photographs depict an event from one's own life. This is broadly
consistent with the observation by McDermott et al. (2009) that the
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majority of the laboratory-based memory studies included in their
meta-analysis featured activation foci derived from old/new recognition
effects. Likewise, our finding that activity patterns within the Autobio-
graphical Network were preferentially associated with photographic
source is consistent with previous studies linking several areas within this
network—such as the medial PFC and hippocampus—to the retrieval of
contextual source details and self-referential processing (Addis et al.,
2004; Cabeza and St Jacques, 2007; Gilboa, 2004; Maguire and Mum-
mery, 1999; Rissman et al., 2016; Svoboda et al., 2006). Critically, our
results demonstrate that personally experienced event memories are
capable of being distinguished from previously encountered depictions of
events, which can be considered a form of secondhand event knowledge.

These findings comport nicely with those from a recent fMRI study by
Chen et al. (2017), which examined univariate activity differences
associated with the successful retrieval of visual memories that were
either recently learned in a laboratory context (participants evaluated
whether or not each scene image had been previously studied) or based
upon their own life experiences (participants evaluated whether or not
each scene image reminded them of a specific event from their own
personal past). Successful retrieval of the laboratory-encoded events
preferentially recruited regions of the frontoparietal control network,
including lateral PFC regions, as well as areas of the so-called parietal
memory network (Gilmore et al., 2015); these regions were highly
overlapping with the Laboratory-based Network defined in the McDer-
mott et al. (2009) meta-analysis. In contrast, successful retrieval of
autobiographical events tended to be associated with activation within
the default mode network, including prominent effects within the medial
PFC, which was comparable to the Autobiographical Network in
McDermott et al. (2009). Although this study did not present participants
with photographs captured from their own life events, nor attempt
MVPA-based decoding of the trial-specific activity patterns, their results
add support to the notion that the brain processes mediating the retrieval
of recently-encoded laboratory events can differ markedly from the
retrieval of autobiographical ones.

Despite the dissociation we found between the event attributes that
could be most strongly decoded within the Autobiographical and
Laboratory-based Networks relative to one another, it is important to
note that activity patterns within both networks were able to reliably
decode the photographic source of events. Indeed, the whole-brain
searchlight maps showed that the Self/Other distinction was particu-
larly robust across large swaths of the posterior parietal cortex and pos-
terior midline regions—effects that overlapped with several clusters
present in both the Autobiographical and Laboratory-based Network
masks. That the Laboratory-based Network, putatively associated with
processing the perceived oldness (or familiarity) of environmental
stimuli, was also highly sensitive to Self/Other status could be at least
partly attributable to the fact that photographs of personally experienced
events likely contained familiar faces, objects, and/or locations that
could evoke a strong sense of recognition, regardless of whether or not
the photographs themselves had been previewed. Accordingly, in this
study, the processes involved in laboratory-based and autobiographical
retrieval may not be mutually exclusive. Previous work provides evi-
dence for some degree of similarity between these retrieval processes.
Rissman et al. 2016 assessed whether a MVPA classifier that was trained
to distinguish between mnemonic retrieval states for laboratory-based
memories from a previous face memory experiment (Rissman et al.,
2010) would be capable of differentiating between the same states (e.g.,
hits vs. correct rejections; recollection vs. familiarity) for real-world
memories. Their results suggest that real-world autobiographical mem-
ories and laboratory-based ones are similar enough to generalize pre-
dictions from one dataset to another. That said, across-experiment
memory classification accuracy was notably poorer than
within-experiment accuracy, likely owing to differences in the underly-
ing retrieval processes—and their neural signatures—associated with the
recognition of laboratory-encoded stimuli and real-world events.

More work will be needed to fully characterize the nature of the
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similarities and differences between autobiographical and laboratory-
based memories. In some ways, the term “laboratory-based” may be a
misnomer, since there is nothing intrinsically special about encoding
information while participating in a psychology experiment versus
encoding information outside of the lab (i.e., in “real life”). Thus, the
divergent patterns of brain activation observed during the retrieval of
these kinds of memories may be driven to a large degree by differences in
the mnemonic processes evoked (e.g., recognition as based on either
contextual recollection or item familiarity), methodology (e.g., percep-
tual qualities of the stimuli used to probe memories), or even charac-
teristics of the tested memories themselves (e.g., personal relevance or
temporal remoteness). For instance, differences in the way photographic
source and pre-exposure status were assessed in our study may have
contributed to the dissociable neural activation patterns. Photographic
source was always task-relevant during the scanning session, in that
participants were explicitly instructed to evaluate whether each event
was from their own life or someone else's life, and only correct trials were
included in our classification analyses. In contrast, pre-exposure status
was not task-relevant, in that participants were never explicitly queried
as to whether they had previously seen the photographs of each event.
Moreover, memories of events from participants' own lives were likely
not only stronger and richer than memories of having recently-encoded
photographs in the laboratory session, but these own-life events were
also more temporally remote, occurring up to four weeks prior to the
fMRI scan session. Photographs from one's own life (Self events) also
tended to contain familiar elements (e.g., frequently encountered people
and places) and may evoke brain responses related to stimulus recogni-
tion in addition to those related to autobiographical event recollection.
Consequently, successful classification of Self vs. Other may be bolstered
by neural activation patterns associated with recognition/familiarity.
This may be one reason that Self vs. Other decoding accuracies were
higher than Previewed vs. Non-Previewed decoding accuracies. How-
ever, it is noteworthy that photographic source decoding accuracy was
not significantly influenced by pre-exposure status, nor was pre-exposure
status decoding accuracy significantly influenced by photographic
source.

Follow-up studies that aim to equate task-relevance, temporal
remoteness, and retrieval strength across laboratory-encoded and auto-
biographical memories would help isolate the factors responsible for the
apparent neural dissociation. Care should be undertaken when inter-
preting classification performance that does not differ significantly from
chance: failure to decode between two task conditions (e.g., the fact that
the Autobiographical Network could not differentiate Previewed vs. Non-
Previewed trials) does not necessarily indicate the complete absence of
information related to these conditions within the underlying neural
tissue. Rather, this could suggest that these conditions could not be
reliably discriminated given our specific classification parameters and
the characteristics of our fMRI dataset; the possibility remains that
different data acquisition and processing procedures or a different clas-
sification algorithm might yield above-chance performance in regions
where we reported a null result. Future work may also benefit from larger
sample sizes, as it is possible that the statistical power of our analyses was
limited by our experiment's modest sample size of 18 participants, which
was constrained by the month-long enrollment period for each partici-
pant and the substantial effort required to prepare each participant's
photographs for the fMRI session. While our sample size is comparable to
other contemporary neuroimaging studies of autobiographical memory
retrieval—especially those involving real-world stimuli (e.g., Nielson
et al., 2015; Rissman et al., 2016)—and all of our classification analyses
were performed at the individual participant level with
participant-specific results reported to provide a fuller portrait of the
robustness of each effect, lower participant sample sizes can potentially
affect statistical reliability and interpretation. Problems with low
participant sample sizes have been documented in neuroimaging studies
more generally (Poldrack et al., 2017), so additional work incorporating
larger samples sizes aimed at replication of our study is critical.
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With respect to applied contexts, the use of fMRI techniques may hold
important societal implications due to the remarkable accuracy with
which brain activity patterns can be used to distinguish recognized
stimuli from novel stimuli (Meegan, 2008; Rissman and Wagner, 2012).
The growing use of neuroscience evidence in the United States legal
system (Farahany, 2015; Meixner, 2015) raises the possibility that
brain-based memory detection approaches could someday find their way
into the criminal justice system. However, before neurotechnologies can
be utilized for applied purposes, such as in forensic settings, it is
imperative to determine whether scientific evidence legitimately justifies
and supports such applications. Rigorous empirical investigation is
needed to evaluate both the capabilities and limitations of fMRI memory
measurements in order to prevent potentially detrimental or unforeseen
consequences. Prior fMRI experiments have demonstrated robust
MVPA-based decoding of specific mnemonic states—including novelty or
recognition—even on single trials (Rissman et al., 2010, 2016; Uncapher
et al., 2015). The results of the present experiment demonstrated that a
MVPA classifier could distinguish participants' own photographs from
previously encountered photographs of other individuals' lives. This in-
dicates the possibility that the distributed neural activity patterns evoked
during the retrieval of a personally experienced event may be differen-
tiated from those evoked by secondhand event knowledge. Furthermore,
our MVPA classifier was capable of differentiating whether or not pho-
tographs of events were being encountered for the first time, irrespective
of their original source, even in the absence of explicit memory judg-
ments. Therefore, the findings of this study not only further current un-
derstanding of autobiographical memory retrieval in naturalistic settings,
but also may inform the utilization of fMRI methodology in applied
contexts as well.

That said, we strongly caution against the direct translation of our
protocol for use as a forensic tool in detecting memories for past events.
The primary goal of our investigation was to characterize the relative
degree to which two large-scale brain networks that have been impli-
cated in episodic retrieval carry information about individuals' experi-
ential history with photographic stimuli and the life events depicted in
those stimuli. While the performance of our neural classifier models
achieved statistical significance when tested against chance at the group-
level, accuracy levels were far from perfect, especially with respect to our
ability to decode whether the photographic stimuli had been previously
encountered prior to scanning. Also, all of our models were trained and
tested within the brains of individual participants. While it is conceivable
that within-participant classifier models could be used in forensic ap-
plications (e.g., if the classifier was first trained on a set of verifiable
memories and then applied to classify crime-relevant memories), it
would be more practical to have models that were pre-trained on a
normative sample. We did not attempt across-subject classification in the
present study, although previous results have shown that brain activity
patterns associated with episodic retrieval states can be remarkably
consistent across individuals (Rissman et al., 2010, 2016). Finally, par-
ticipants in our study had no incentives to conceal their memories or be
non-cooperative with the instructions of our explicit recognition task, but
related work has shown that individuals motivated to “beat the system”

can deploy simple cognitive strategies to mask their recognition of
familiar stimuli or feign recognition of novel ones (Uncapher et al.,
2015). Given all of these factors, along with the fact that first-person
photographs captured by wearable cameras may be quite different in
their ability to cue episodic retrieval than third-person photographs (e.g.,
security camera footage), we believe that much additional research will
be needed before forensic applications are warranted.
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